Skip to main content
Log in

Synthesis, antiproliferative activity in cancer cells and DNA interaction studies of [Pt(cis-1,3-diaminocycloalkane)Cl2] analogs

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The search for more effective platinum anticancer drugs has led to the design, synthesis, and preclinical testing of hundreds of new platinum complexes. This search resulted in the recognition and subsequent FDA approval of the third-generation Pt(II) anticancer drug, [Pt(1,2-diaminocyclohexane)(oxalate)], oxaliplatin, as an effective agent in treating colorectal and gastrointestinal cancers. Another promising example of the class of anticancer platinum(II) complexes incorporating the Pt(1,n-diaminocycloalkane) moiety is kiteplatin ([Pt(cis-1,4-DACH)Cl2], DACH = diaminocyclohexane). We report here our progress in evaluating the role of the cycloalkyl moiety in these complexes focusing on the synthesis, characterization, evaluation of the antiproliferative activity in tumor cells and studies of the mechanism of action of new [Pt(cis-1,3-diaminocycloalkane)Cl2] complexes wherein the cis-1,3-diaminocycloalkane group contains the cyclobutyl, cyclopentyl, and cyclohexyl moieties. We demonstrate that [Pt(cis-1,3-DACH)Cl2] destroys cancer cells with greater efficacy than the other two investigated 1,3-diamminocycloalkane derivatives, or cisplatin. Moreover, the investigated [Pt(cis-1,3-diaminocycloalkane)Cl2] complexes show selectivity toward tumor cells relative to non-tumorigenic normal cells. We also performed several mechanistic studies in cell-free media focused on understanding some early steps in the mechanism of antitumor activity of bifunctional platinum(II) complexes. Our data indicate that reactivities of the investigated [Pt(cis-1,3-diaminocycloalkane)Cl2] complexes and cisplatin with glutathione and DNA binding do not correlate with antiproliferative activity of these platinum(II) complexes in cancer cells. In contrast, we show that the higher antiproliferative activity in cancer cells of [Pt(cis-1,3-DACH)Cl2] originates from its highest hydrophobicity and most efficient cellular uptake.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Connors TA, Jones M, Ross WCJ, Braddock PD, Khokhar AR, Tobe ML (1972) New platinum complexes with anti-tumour activity. Chem Biol Interact 5:415–424

    Article  CAS  PubMed  Google Scholar 

  2. Cleare MJ, Hoeschele JD (1973) Antitumor activity of group viii transition metal complexes. 1. Platinum(ll) complexes. Bioinorg Chem 2:187–210

    Article  CAS  Google Scholar 

  3. Gale GR, Walker EM Jr, Atkins LM, Smith AB, Meischen SJ (1974) Antileukemic properties of dichloro(1,2-diaminocyclohexane)platinum(II). Res Commun Chem Pathol Pharmacol 7:529–538

    CAS  PubMed  Google Scholar 

  4. Kidani Y, Inagaki K, Iigo M, Hoshi A, Kuretani K (1978) Antitumor activity of 1,2-diamminocyclohexane-platinum complexes against sarcoma 180 ascites form. J Med Chem 21:1315–1318

    Article  CAS  PubMed  Google Scholar 

  5. Kim GP, Erlichman C (2007) Oxaliplatin in the treatment of colorectal cancer. Exp Opin Drug Metabol Toxicol 3:281–294

    Article  CAS  Google Scholar 

  6. Kochi M, Fujii M, Kanamori N, Kaiga T, Okubo R, Mihara Y, Takayama T (2011) Pharmacokinetics of oxaliplatin in gastrointestinal cancer patients with malignant ascites. J Chemother 23:28–31

    Article  CAS  PubMed  Google Scholar 

  7. Hoeschele JD, Petruzzella E, Margiotta N, Natile G, Gandin V, Marzano C (2014) Kiteplatin—a potential clinical candidate showing significant activity vs Oxaliplatin-resistant colorectal cancer. Anticancer Res 34:5949–5950

    Google Scholar 

  8. Johnstone TC, Suntharalingam K, Lippard SJ (2016) The next generation of platinum drugs: Targeted pt(II) agents, nanoparticle delivery, and pt(iv) prodrugs. Chem Rev 116:3436–3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brabec V, Hrabina O, Kasparkova J (2017) Cytotoxic platinum coordination compounds DNA binding agents. Coord Chem Rev 351:2–31

    Article  CAS  Google Scholar 

  10. Dhara SC (1970) Process for the production of pure cis-platinum-(II)-diammine dichloride. Indian J Chem 8:193–194

    Google Scholar 

  11. Geyer R, Nordemann U, Strasser A, Wittmann H-J, Buschauer A (2016) Conformational restriction and enantioseparation increase potency and selectivity of cyanoguanidine-type histamine h4 receptor agonists. J Med Chem 59:3452–3470

    Article  CAS  PubMed  Google Scholar 

  12. Sheldrick G (2015) Shelxt—integrated space-group and crystal-structure determination. Acta Crystallog Sect. A 71:3–8

    Article  Google Scholar 

  13. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) Olex2: A complete structure solution, refinement and analysis program. J Appl Crystallog 42:339–341

    Article  CAS  Google Scholar 

  14. Sheldrick GM (2008) A short history of shelx. Acta Crystallogr Sect A 64:112–122

    Article  CAS  Google Scholar 

  15. Kasparkova J, Kostrhunova H, Novohradsky V, Pracharova J, Curci A, Margiotta N, Natile G, Brabec V (2017) Anticancer kiteplatin pyrophosphate derivatives show unexpected target selectivity for DNA. Dalton Trans 46:14139–14148

    Article  CAS  PubMed  Google Scholar 

  16. Hreusova M, Novákova O, Kostrhunova H, Pracharova J, Brabec V, Kašpárková J (2019) DNA modification by cisplatin-like Pt(II) complexes containing 1,1′-binaphtyl-2,2′-diamine ligand does not correlate with their antiproliferative activity in cancer cells. Inorg Chim Acta 495:118952

    Article  CAS  Google Scholar 

  17. Novakova O, Liskova B, Vystrcilova J, Suchankova T, Vrana O, Starha P, Travnicek Z, Brabec V (2014) Conformation and recognition of DNA damaged by antitumor cis-dichlorido platinum(ii) complex of cdk inhibitor bohemine. Eur J Med Chem 78:54–64

    Article  CAS  PubMed  Google Scholar 

  18. Dabrowiak JC, Goodisman J, Souid AK (2002) Kinetic study of the reaction of cisplatin with thiols. Drug Metab Dispos 30:1378–1384

    Article  CAS  PubMed  Google Scholar 

  19. Qu Y, Wenxia T, Hu H, Dai A, Ji X, Zhang F and Liu Y (1986) Synthesis,characterization and antitumour activity of platinum complexes of 1,3-diaminocyclohexane. Chinese J Appl Chem 3:25–29

  20. Kasparkova J, Suchankova T, Halamikova A, Zerzankova L, Vrana O, Margiotta N, Natile G, Brabec V (2010) Cytotoxicity, cellular uptake, glutathione and DNA interactions of an antitumor large-ring ptii chelate complex incorporating the cis-1,4-diaminocyclohexane carrier ligand. Biochem Pharmacol 79:552–564

    Article  CAS  PubMed  Google Scholar 

  21. Margiotta N, Savino S, Marzano C, Pacifico C, Hoeschele JD, Gandin V, Natile G (2016) Cytotoxicity-boosting of kiteplatin by Pt(IV) prodrugs with axial benzoate ligands. J Inorg Biochem 160:85–93

    Article  CAS  PubMed  Google Scholar 

  22. Kostrhunova H, Zajac J, Novohradsky V, Kasparkova J, Malina J, Aldrich-Wright JR, Petruzzella E, Sirota R, Gibson D, Brabec V (2019) A subset of new platinum antitumor agents kills cells by a multimodal mechanism of action also involving changes in the organization of the microtubule cytoskeleton. J Med Chem 62:5176–5190

    Article  CAS  PubMed  Google Scholar 

  23. Margiotta N, Marzano C, Gandin V, Osella D, Ravera M, Gabano E, Platts JA, Petruzzella E, Hoeschele JD, Natile G (2012) Revisiting [PtCl2(cis-1,4-dach)]: An underestimated antitumor drug with potential application to the treatment of oxaliplatin-refractory colorectal cancer. J Med Chem 55:7182–7192

    Article  CAS  PubMed  Google Scholar 

  24. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320

    Article  CAS  PubMed  Google Scholar 

  25. Novohradsky V, Liu Z, Vojtiskova M, Sadler PJ, Brabec V, Kasparkova J (2014) Mechanism of cellular accumulation of an iridium(iii) pentamethylcyclopentadienyl anticancer complex containing a C, N-chelating ligand. Metallomics 6:682–690

    Article  CAS  PubMed  Google Scholar 

  26. Safaei R, Howell SB (2005) Copper transporters regulate the cellular pharmacology and sensitivity to pt drugs. Crit Rev Oncol Hematol 53:13–23

    Article  PubMed  Google Scholar 

  27. Reedijk J (1999) Why does cisplatin reach guanine-N7 with competing s-donor ligands avaiable in the cell? Chem Rev 99:2499–2510

    Article  CAS  PubMed  Google Scholar 

  28. Hagrman D, Goodisman J, Dabrowiak JC, Souid AK (2003) Kinetic study on the reaction of cisplatin with metallothionein. Drug Metab Disp 31:916–923

    Article  CAS  Google Scholar 

  29. Johnson NP, Butour J-L, Villani G, Wimmer FL, Defais M, Pierson V, Brabec V (1989) Metal antitumor compounds: the mechanism of action of platinum complexes. Prog Clin Biochem Med 10:1–24

    Article  CAS  Google Scholar 

  30. Johnstone TC, Alexander SM, Lin W, Lippard SJ (2014) Effects of monofunctional platinum agents on bacterial growth: a retrospective study. J Am Chem Soc 136:116–118

    Article  CAS  PubMed  Google Scholar 

  31. Kasparkova J, Brabec V (2015) Effects of antitumor derivatives of ineffective transplatin on bacterial cells: is DNA a pharmacological target? J Inorg Biochem 153:206–210

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education of the Czech Republic [Grant Number LTAUSA18009]. The authors acknowledge that Richard Staples from the Chemistry Department, Michigan State University determined the crystal structures of our three Pt(cis-1,3-diaminocycloalkane)Cl2 samples and Dan Holmes from the Chemistry Department, Michigan State University obtained the 1H and 195Pt NMR spectral data for these complexes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Brabec.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

The structural data are deposited with the Cambridge Crystallographic Data Center: 2021147 ([Pt(cis-1,3-diaminocyclobutane)Cl2]), 2021148 ([Pt(cis-1,3-diaminocyclopentane)Cl2]), 2021149 ([Pt(cis-1,3-diaminocyclohexane)Cl2]).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 929 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoeschele, J.D., Kasparkova, J., Kostrhunova, H. et al. Synthesis, antiproliferative activity in cancer cells and DNA interaction studies of [Pt(cis-1,3-diaminocycloalkane)Cl2] analogs. J Biol Inorg Chem 25, 913–924 (2020). https://doi.org/10.1007/s00775-020-01809-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01809-9

Keywords

Navigation