Skip to main content

Advertisement

Log in

Review of cancer-associated fibroblasts and their microenvironment in post-chemotherapy recurrence

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Cancer tissue comprises not only cancer cells, but also several types of non-cancerous cells, such as cancer-associated fibroblasts. These fibroblasts directly and/or indirectly communicate with the cancer cells and other types of stromal cells, to create a specific tumor microenvironment. Cytotoxic chemotherapy plays a central role in treating cancer; however, tumor re-progression (recurrence) is a significant problem for cancer patients. Cytotoxic anticancer drugs act on fibroblasts as well as cancer cells and, after chemotherapy, all surviving cells are in contact with one another in the local environment. Therefore, an understanding of the molecular interactions between surviving cancer cells and fibroblasts is necessary to prevent tumor re-progression and to sustain the effect of cytotoxic agents. After chemotherapy, the number of fibroblasts may increase, some of which are identifiable as tumor-promoting. In this review, we discuss the significance of cancer-associated fibroblasts in tumor re-progression after chemotherapy, and the potential value of targeting them to enhance clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.

    Article  CAS  PubMed  Google Scholar 

  2. Ishii G, Ochiai A, Neri S. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev. 2016;99:186–96.

    Article  CAS  PubMed  Google Scholar 

  3. Roswall P, Bocci M, Bartoschek M, et al. Microenvironmental control of breast cancer subtype elicited through paracrine platelet-derived growth factor-CC signaling. Nat Med. 2018;24:463–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Polanska UM, Orimo A. Carcinoma-associated fibroblasts: non-neoplastic tumour-promoting mesenchymal cells. J Cell Physiol. 2013;228:1651–7.

    Article  CAS  PubMed  Google Scholar 

  5. Augsten M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol. 2014;4:62.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hoshino A, Ishii G, Ito T, et al. Podoplanin-positive fibroblasts enhance lung adenocarcinoma tumor formation: podoplanin in fibroblast functions for tumor progression. Cancer Res. 2011;71:4769–79.

    Article  CAS  PubMed  Google Scholar 

  7. Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48.

    Article  CAS  PubMed  Google Scholar 

  8. Yoshida T, Ishii G, Goto K, et al. Podoplanin-positive cancer-associated fibroblasts in the tumor microenvironment induce primary resistance to EGFR-TKIs in lung adenocarcinoma with EGFR mutation. Clin Cancer Res. 2015;21:642–51.

    Article  CAS  PubMed  Google Scholar 

  9. Koizumi W, Narahara H, Hara T, et al. S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): a phase III trial. Lancet Oncol. 2008;9:215–21.

    Article  CAS  PubMed  Google Scholar 

  10. Yamada Y, Higuchi K, Nishikawa K, et al. Phase III study comparing oxaliplatin plus S-1 with cisplatin plus S-1 in chemotherapy-naïve patients with advanced gastric cancer. Ann Oncol. 2015;26:141–8.

    Article  CAS  PubMed  Google Scholar 

  11. Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.

    Article  CAS  PubMed  Google Scholar 

  12. Tournigand C, André T, Achille E, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol. 2004;22:229–37.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou N, Wu X, Yang B, Yang X, Zhang D, Qing G. Stem cell characteristics of dormant cells and cisplatininduced effects on the stemness of epithelial ovarian cancer cells. Mol Med Rep. 2014;10:2495–504.

    Article  CAS  PubMed  Google Scholar 

  14. Galluzzi L, Senovilla L, Vitale I, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31:1869–83.

    Article  CAS  PubMed  Google Scholar 

  15. Liang SQ, Marti TM, Dorn P, et al. Blocking the epithelial-to-mesenchymal transition pathway abrogates resistance to anti-folate chemotherapy in lung cancer. Cell Death Dis. 2015;6:e1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kadel D, Zhang Y, Sun HR, Zhao Y, Dong QZ, Qin LX. Current perspectives of cancer-associated fibroblast in therapeutic resistance: potential mechanism and future strategy. Cell Biol Toxicol. 2019;35:407–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao H, Peehl DM. Tumor-promoting phenotype of CD90hi prostate cancer-associated fibroblasts. Prostate. 2009;69:991–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Straussman R, Morikawa T, Shee K, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487:500–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen WJ, Ho CC, Chang YL, et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 2014;5:3472.

    Article  PubMed  CAS  Google Scholar 

  20. Yu Y, Xiao CH, Tan LD, Wang QS, Li XQ, Feng YM. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br J Cancer. 2014;110:724–32.

    Article  CAS  PubMed  Google Scholar 

  21. Neri S, Ishii G, Hashimoto H, et al. Podoplanin-expressing cancer-associated fibroblasts lead and enhance the local invasion of cancer cells in lung adenocarcinoma. Int J Cancer. 2015;137:784–96.

    Article  CAS  PubMed  Google Scholar 

  22. Ishibashi M, Neri S, Hashimoto H, et al. CD200-positive cancer associated fibroblasts augment the sensitivity of Epidermal Growth Factor Receptor mutation-positive lung adenocarcinomas to EGFR Tyrosine kinase inhibitors. Sci Rep. 2017;7:46662.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest. 1995;95:859–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ishii G, Sangai T, Oda T, et al. Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem Biophys Res Commun. 2003;309:232–40.

    Article  CAS  PubMed  Google Scholar 

  25. Kawase A, Ishii G, Nagai K, et al. Podoplanin expression by cancer associated fibroblasts predicts poor prognosis of lung adenocarcinoma. Int J Cancer. 2008;123:1053–9.

    Article  CAS  PubMed  Google Scholar 

  26. Ito M, Ishii G, Maeda R, et al. Prognostic impact of cancer-associated stromal cells in patients with stage I lung adenocarcinoma. Chest. 2012;142:151–8.

    Article  PubMed  Google Scholar 

  27. Ono S, Ishii G, Nagai K, et al. Podoplanin-positive cancer-associated fibroblasts could have prognostic value independent of cancer cell phenotype in stage I lung squamous cell carcinoma: usefulness of combining analysis of both cancer cell phenotype and cancer-associated fibroblast phenotype. Chest. 2013;143:963–70.

    Article  PubMed  Google Scholar 

  28. Schoppmann SF, Berghoff A, Dinhof C, et al. Podoplanin-expressing cancer-associated fibroblasts are associated with poor prognosis in invasive breast cancer. Breast Cancer Res Treat. 2012;134:237–44.

    Article  CAS  PubMed  Google Scholar 

  29. Ito S, Ishii G, Hoshino A, et al. Tumor promoting effect of podoplanin-positive fibroblasts is mediated by enhanced RhoA activity. Biochem Biophys Res Commun. 2012;422:194–9.

    Article  CAS  PubMed  Google Scholar 

  30. Tyan SW, Kuo WH, Huang CK, et al. Breast cancer cells induce cancer-associated fibroblasts to secrete hepatocyte growth factor to enhance breast tumorigenesis. PLoS ONE. 2011;6:e15313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu X, Chen X, Zhou Q, et al. Hepatocyte growth factor activates tumor stromal fibroblasts to promote tumorigenesis in gastric cancer. Cancer Lett. 2013;335:128–35.

    Article  CAS  PubMed  Google Scholar 

  32. Kinoshita T, Ishii G, Hiraoka N, et al. Forkhead box P3 regulatory T cells coexisting with cancer associated fibroblasts are correlated with a poor outcome in lung adenocarcinoma. Cancer Sci. 2013;104:409–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Costa A, Kieffer Y, Scholer-Dahirel A, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 2018;33:463–79.

    Article  CAS  PubMed  Google Scholar 

  34. Vosseler S, Lederle W, Airola K, Obermueller E, Fusenig NE, Mueller MM. Distinct progression-associated expression of tumor and stromal MMPs in HaCaT skin SCCs correlates with onset of invasion. Int J Cancer. 2009;125:2296–306.

    Article  CAS  PubMed  Google Scholar 

  35. Gaggioli C, Hooper S, Hidalgo-Carcedo C, et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol. 2007;9:1392–400.

    Article  CAS  PubMed  Google Scholar 

  36. Goto M, Naito M, Saruwatari K, et al. The ratio of cancer cells to stroma after induction therapy in the treatment of non-small cell lung cancer. J Cancer Res Clin Oncol. 2017;143:215–23.

    Article  CAS  PubMed  Google Scholar 

  37. Hisamitsu S, Miyashita T, Hashimoto H, et al. Interaction between cancer cells and cancer-associated fibroblasts after cisplatin treatment promotes cancer cell regrowth. Hum Cell. 2019;32:453–64.

    Article  CAS  PubMed  Google Scholar 

  38. Lotti F, Jarrar AM, Pai RK, et al. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med. 2013;210:2851–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tao L, Huang G, Wang R, et al. Cancer-associated fibroblasts treated with cisplatin facilitates chemoresistance of lung adenocarcinoma through IL-11/IL-11R/STAT3 signaling pathway. Sci Rep. 2016;6:38408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Toste P, Nguyen A, Kadera B, et al. Chemotherapy-induced inflammatory gene signature and protumorigenic phenotype in pancreatic CAFs via stress-associated MAPK. Mol Cancer Res. 2016;14:437–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rong G, Kang H, Wang Y, Hai T, Sun H. Candidate markers that associate with chemotherapy resistance in breast cancer through the study on taxotere-induced damage to tumor microenvironment and gene expression profiling of carcinoma-associated fibroblasts (CAFs). PLoS ONE. 2013;8:e70960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun Y, Campisi J, Higano C, et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med. 2012;18:1359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Esmatabadi MJ, Bakhshinejad B, Motlagh FM, Babashah S, Sadeghizadeh M. Therapeutic resistance and cancer recurrence mechanisms: unfolding the story of tumour coming back. J Biosci. 2016;41:497–506.

    Article  CAS  PubMed  Google Scholar 

  44. Karsch-Bluman A, Feiglin A, Arbib E, et al. Tissue necrosis and its role in cancer progression. Oncogene. 2019;38:1920–35.

    Article  CAS  PubMed  Google Scholar 

  45. Medina CB, Mehrotra P, Arandjelovic S, Perry JSA, Guo Y, Morioka S, Barron B, Walk SF, Ghesquière B, Krupnick AS, Lorenz U, Ravichandran KS. Metabolites released from apoptotic cells act as tissue messengers. Nature. 2020;580:130–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yasunaga M, Manabe S, Tarin D, Matsumura Y. Tailored immunoconjugate therapy depending on a quantity of tumor stroma. Cancer Sci. 2013;104:231–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Hiroko Hashimoto for her excellent technical supports.

Funding

This study was funded in part by the National Cancer Center Research and Development Fund (31-A-6 and 31-A-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genichiro Ishii.

Ethics declarations

Conflict of interest

No author has any conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishii, G., Ishii, T. Review of cancer-associated fibroblasts and their microenvironment in post-chemotherapy recurrence. Human Cell 33, 938–945 (2020). https://doi.org/10.1007/s13577-020-00417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00417-8

Keywords

Navigation