Skip to main content
Log in

Heat transfer and flow characteristics of hybrid Al2O3/TiO2–water nanofluid in a minichannel heat sink

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Heat transfer enhancement in thermal systems has great importance in achieving better performances at decreased spaces. In the present work, by combining two passive enhancement methods of using miniaturized channels and utilizing nanofluid, the heat transfer from a heated surface is investigated. In this regard, the thermal performance of an Aluminum minichannel heat sink with rectangular cross-sections was experimentally investigated. The hydraulic diameter of the minichannels is 2 mm. Distilled water, TiO2–water nanofluid, Al2O3-water nanofluid and hybrid Al2O3/TiO2–water nanofluid were used with a volume fraction of 0.5% as coolants. Constant heat flux boundary condition was considered and maintained by a heater with the power of 36 W at the bottom of the heat sink. The effect of different Reynolds numbers ranged from 400 to 1000 on the thermal performance of the heat sink was evaluated. The experimental results indicated significant improvements in thermal characteristics by using nanofluids as a coolant instead of pure water. The convective heat transfer coefficient enhanced up to 16.97% compared to pure water. The wall temperature reduced up to 5 °C with using Al2O3/TiO2–water hybrid nanofluid instead of pure water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mussard M (2017) Solar energy under cold climatic conditions: a review. Renew Sust Energ Rev 74:733–745. https://doi.org/10.1016/j.rser.2017.03.009

    Article  Google Scholar 

  2. Moghanlou FS, Khorrami AS, Esmaeilzadeh E, Aminfar H (2014) Experimental study on electrohydrodynamically induced heat transfer enhancement in a minichannel. Exp Thermal Fluid Sci 59:24–31. https://doi.org/10.1016/j.expthermflusci.2014.07.019

    Article  Google Scholar 

  3. Vajdi M, Shahedi Asl M, Nekahi S, Sadegh Moghanlou F, Jafargholinejad S, Mohammadi M (2020) Numerical assessment of beryllium oxide as an alternative material for micro heat exchangers. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.04.263

  4. Vajdi M, Sadegh Moghanlou F, Ranjbarpour Niari E, Shahedi Asl M, Shokouhimehr M (2019) Heat transfer and pressure drop in a ZrB2 microchannel heat sink: a numerical approach. Ceram Int. https://doi.org/10.1016/j.ceramint.2019.09.146

  5. Nekahi S, Vajdi M, Sadegh Moghanlou F, Vaferi K, Motallebzadeh A, Özen M, Aydemir U, Sha J, Shahedi Asl M (2019) TiB2–SiC-based ceramics as alternative efficient micro heat exchangers. Ceram Int. https://doi.org/10.1016/j.ceramint.2019.06.150

  6. Duangthongsuk W, Wongwises S (2017) An experimental investigation on the heat transfer and pressure drop characteristics of nanofluid flowing in microchannel heat sink with multiple zigzag flow channel structures. Exp Thermal Fluid Sci 87:30–39. https://doi.org/10.1016/j.expthermflusci.2017.04.013

    Article  Google Scholar 

  7. Hussien AA, Yusop NM, Al-Nimr MA et al (2019) Numerical Study of Heat Transfer Enhancement Using Al2O3–Graphene/Water Hybrid Nanofluid Flow in Mini Tubes. Iran J Sci Technol Trans Sci 43:1989–2000. https://doi.org/10.1007/s40995-018-0670-1

  8. Yarmand H, Gharehkhani S, Ahmadi G, Shirazi SFS, Baradaran S, Montazer E, Zubir MNM, Alehashem MS, Kazi SN, Dahari M (2015) Graphene nanoplatelets–silver hybrid nanofluids for enhanced heat transfer. Energy Convers Manag 100:419–428. https://doi.org/10.1016/j.enconman.2015.05.023

    Article  Google Scholar 

  9. Sakkaki M, Sadegh Moghanlou F, Parvizi S et al (2020) Phase change materials as quenching media for heat treatment of 42CrMo4 steels. J. Cent. South Univ 27:752–761. https://doi.org/10.1007/s11771-020-4328-8

  10. Bahiraei M, Naghibzadeh SM, Jamshidmofid M (2017) Efficacy of an eco-friendly nanofluid in a miniature heat exchanger regarding to arrangement of silver nanoparticles. Energy Convers Manag 144:224–234. https://doi.org/10.1016/j.enconman.2017.04.076

    Article  Google Scholar 

  11. Das SK, Choi SUS, Patel HE (2006) Heat transfer in nanofluids –a review. Heat Transf Eng 27:3–19. https://doi.org/10.1080/01457630600904593

    Article  Google Scholar 

  12. Bahiraei M (2016) Particle migration in nanofluids: a critical review. Int J Therm Sci 109:90–113. https://doi.org/10.1016/j.ijthermalsci.2016.05.033

    Article  Google Scholar 

  13. Al-Rashed MH, Dzido G, Korpyś M, Smołka J, Wójcik J (2016) Investigation on the CPU nanofluid cooling. Microelectron Reliab 63:159–165. https://doi.org/10.1016/j.microrel.2016.06.016

    Article  Google Scholar 

  14. Eastman JA, Choi US, Li S, Soyez G, Thompson LJ, DiMelfi RJ (1999) Novel thermal properties of nanostructured materials. Mater Sci Forum 312–314:629–634. https://doi.org/10.4028/www.scientific.net/MSF.312-314.629

    Article  Google Scholar 

  15. Lee S, Choi SU-S, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289. https://doi.org/10.1115/1.2825978

    Article  Google Scholar 

  16. Hussien AA, Yusop NM, Moh’d AAN, et al (2019) Numerical study of heat transfer enhancement using Al 2 O 3–graphene/water hybrid nanofluid flow in mini tubes. Iranian Journal of Science and Technology, Transactions A: Science 43(4):1989-2000. https://doi.org/10.1115/1.3013831

  17. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170. https://doi.org/10.1080/08916159808946559

    Article  Google Scholar 

  18. Bahiraei M, Heshmatian S (2018) Electronics cooling with nanofluids: a critical review. Energy Convers Manag 172:438–456. https://doi.org/10.1016/j.enconman.2018.07.047

    Article  Google Scholar 

  19. Tuckerman DB, Pease RFW (1981) High-performance heat sinking for VLSI. IEEE Electron Device Lett 2:126–129. https://doi.org/10.1109/EDL.1981.25367

    Article  Google Scholar 

  20. Nguyen CT, Roy G, Gauthier C, Galanis N (2007) Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system. Appl Therm Eng 27:1501–1506. https://doi.org/10.1016/j.applthermaleng.2006.09.028

    Article  Google Scholar 

  21. Ranjbarzadeh R, Karimipour A, Afrand M, Isfahani AHM, Shirneshan A (2017) Empirical analysis of heat transfer and friction factor of water/graphene oxide nanofluid flow in turbulent regime through an isothermal pipe. Appl Therm Eng 126:538–547. https://doi.org/10.1016/j.applthermaleng.2017.07.189

    Article  Google Scholar 

  22. Peng XF, Peterson GP (1996) Convective heat transfer and flow friction for water flow in microchannel structures. Int J Heat Mass Transf 39:2599–2608. https://doi.org/10.1016/0017-9310(95)00327-4

    Article  Google Scholar 

  23. Ho CJ, Wei LC, Li ZW (2010) An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid. Appl Therm Eng 30:96–103. https://doi.org/10.1016/j.applthermaleng.2009.07.003

    Article  Google Scholar 

  24. Ho CJ, Chung YN, Lai C-M (2014) Thermal performance of Al 2 O 3 /water nanofluid in a natural circulation loop with a mini-channel heat sink and heat source. Energy Convers Manag 87:848–858. https://doi.org/10.1016/j.enconman.2014.07.079

    Article  Google Scholar 

  25. Sarkar J, Ghosh P, Adil A (2015) A review on hybrid nanofluids: recent research, development and applications. Renew Sust Energ Rev 43:164–177. https://doi.org/10.1016/j.rser.2014.11.023

    Article  Google Scholar 

  26. Verma SK, Tiwari AK (2015) Progress of nanofluid application in solar collectors: a review. Energy Convers Manag 100:324–346. https://doi.org/10.1016/j.enconman.2015.04.071

    Article  Google Scholar 

  27. Sinz C, Woei H, Khalis M, Abbas SA (2016) Numerical study on turbulent force convective heat transfer of hybrid nanofluid, Ag/HEG in a circular channel with constant heat flux. J Adv Res Fluid Mech Therm Sci 24:1–11

    Google Scholar 

  28. Das SK, Choi SUS, Yu W, Pradeep T (2007) Nanofluids. Wiley, Hoboken. https://doi.org/10.1002/9780470180693

    Book  Google Scholar 

  29. Hemmat Esfe M, Rahimi Raki H, Sarmasti Emami MR, Afrand M (2019) Viscosity and rheological properties of antifreeze based nanofluid containing hybrid nano-powders of MWCNTs and TiO2 under different temperature conditions. Powder Technol 342:808–816. https://doi.org/10.1016/j.powtec.2018.10.032

    Article  Google Scholar 

  30. Huang D, Wu Z, Sunden B (2016) Effects of hybrid nanofluid mixture in plate heat exchangers. Exp Thermal Fluid Sci 72:190–196. https://doi.org/10.1016/j.expthermflusci.2015.11.009

    Article  Google Scholar 

  31. Selvakumar P, Suresh S (2012) Use of ${\text Al}_{2}{\text O}_{3}\hbox{-}{\text Cu}$/water hybrid nanofluid in an electronic heat sink. IEEE Trans Components Packag Manuf Technol 2:1600–1607. https://doi.org/10.1109/TCPMT.2012.2211018

    Article  Google Scholar 

  32. Nimmagadda R, Venkatasubbaiah K (2017) Experimental and multiphase analysis of nanofluids on the conjugate performance of micro-channel at low Reynolds numbers. Heat Mass Transf 53:2099–2115. https://doi.org/10.1007/s00231-017-1970-2

    Article  Google Scholar 

  33. Charab AA, Movahedirad S, Norouzbeigi R (2017) Thermal conductivity of Al 2 O 3 + TiO 2 /water nanofluid: model development and experimental validation. Appl Therm Eng 119:42–51. https://doi.org/10.1016/j.applthermaleng.2017.03.059

    Article  Google Scholar 

  34. Momin G (2013) Experimental investigation of mixed convection with water-Al2O3 & hybrid nanofluid in inclined tube for laminar flow. Int J Sci Technol Res 2:195–202

    Google Scholar 

  35. Zarma I, Ahmed M, Ookawara S (2019) Enhancing the performance of concentrator photovoltaic systems using nanoparticle-phase change material heat sinks. Energy Convers Manag 179:229–242. https://doi.org/10.1016/j.enconman.2018.10.055

    Article  Google Scholar 

  36. Alkasmoul FS, Al-Asadi MT, Myers TG, Thompson HM, Wilson MCT (2018) A practical evaluation of the performance of Al2O3-water, TiO2-water and CuO-water nanofluids for convective cooling. Int J Heat Mass Transf 126:639–651. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.072

    Article  Google Scholar 

  37. Takabi B, Salehi S (2014) Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Adv Mech Eng 6:147059. https://doi.org/10.1155/2014/147059

    Article  Google Scholar 

  38. Rea U, McKrell T, Hu L, Buongiorno J (2009) Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids. Int J Heat Mass Transf 52:2042–2048. https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.025

    Article  Google Scholar 

  39. Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707. https://doi.org/10.1016/S0017-9310(99)00369-5

    Article  MATH  Google Scholar 

  40. Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571–571. https://doi.org/10.1063/1.1700493

    Article  Google Scholar 

  41. Hayat T, Nadeem S (2017) Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results Phys 7:2317–2324. https://doi.org/10.1016/j.rinp.2017.06.034

    Article  Google Scholar 

  42. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1:187–191. https://doi.org/10.1021/i160003a005

    Article  Google Scholar 

  43. Stern F, Muste M, Beninati ML, Eichinger WE (1999) Summary of experimental uncertainty assessment methodology with example

  44. Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech Eng 75:3–8

    Google Scholar 

  45. P.D.T. O’Connor Experimentation and uncertainty analysis for engineers, H. W. Coleman and W. G. Steele, Wiley, 1989. Number of pages: 205. Price: £35.50. Qual Reliab Eng Int 6 (1990) 231–231. doi: https://doi.org/10.1002/qre.4680060315

  46. Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Thermal Fluid Sci 1:3–17. https://doi.org/10.1016/0894-1777(88)90043-X

    Article  Google Scholar 

  47. Agarwal DK, Vaidyanathan A, Sunil Kumar S (2015) Investigation on convective heat transfer behaviour of kerosene-Al 2 O 3 nanofluid. Appl Therm Eng 84:64–73. https://doi.org/10.1016/j.applthermaleng.2015.03.054

    Article  Google Scholar 

  48. Prasher R, Song D, Wang J, Phelan P (2006) Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett 89:133108. https://doi.org/10.1063/1.2356113

    Article  Google Scholar 

  49. Kandlikar SG (2005) High flux heat removal with microchannels – a roadmap of challenges and opportunities. Heat Transf Eng 26:5–14. https://doi.org/10.1080/01457630591003655

    Article  Google Scholar 

  50. Moghanlou FS, Noorzadeh S, Ataei M, et al (2020) Experimental investigation of heat transfer and pressure drop in a minichannel heat sink using Al2O3 and TiO2–water nanofluids. J Braz Soc Mech Sci Eng 42(6)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Sadegh Moghanlou.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Uncertainties for parameters that account in the analysis are calculated as below

Uncertainties for parameters that account in the analysis are calculated as below

(A) Reynolds number, Re

$$ \operatorname{Re}=\frac{\rho UD}{\mu}\to \operatorname{Re}=\frac{4\dot{m}}{\pi {D}_H\mu } $$
(21)
$$ \frac{X_{\mathrm{Re}}}{\operatorname{Re}}=\sqrt{{\left(\frac{X_m}{m}\right)}^2+{\left(\left(-1\right)\frac{X_t}{t}\right)}^2+{\left(\left(-1\right)\frac{X_{D_H}}{D_H}\right)}^2}=0.0151 $$
(22)

(B) Applied heat, Q

$$ Q= VI $$
(23)
$$ \frac{X_Q}{Q}=\sqrt{{\left(\frac{X_V}{V}\right)}^2+{\left(\frac{X_I}{I}\right)}^2}=0.0342 $$
(24)

(C) Convection heat transfer coefficient, h

$$ h=\frac{Q}{A\left({T}_w-{T}_{\infty}\right)} $$
(25)
$$ \frac{X_h}{h}=\sqrt{{\left(\frac{X_Q}{Q}\right)}^2+{\left(\left(-1\right)\frac{X_{T_w-{T}_{\infty }}}{T_w-{T}_{\infty }}\right)}^2+{\left(\left(-1\right)\frac{X_D}{D}\right)}^2+{\left(\left(-1\right)\frac{X_L}{L}\right)}^2}=0.0344 $$
(26)

(D) Nusselt number, Nu

$$ Nu=\frac{h{D}_H}{k}\to Nu=h{D}_H{k}^{-1} $$
(27)
$$ \frac{X_{Nu}}{Nu}=\sqrt{{\left(\frac{X_h}{h}\right)}^2+{\left(\left(\frac{X_{D_H}}{D_H}\right)\right)}^2}=0.0379 $$
(28)

(E) Friction factor, f

$$ f=\frac{\varDelta P}{\left(\frac{L}{D_H}\right)\left(\frac{\rho {U}^2}{2}\right)}=\frac{1}{2}\left(\frac{\varDelta P}{L}\right)\left(\frac{\rho {D_H}^3}{{\operatorname{Re}}^2{\mu}^2}\right) $$
(29)
$$ \frac{X_f}{f}=\sqrt{{\left(\frac{X_{\varDelta P}}{\varDelta P}\right)}^2+{\left(\left(-1\right)\frac{X_L}{L}\right)}^2+{\left(3\frac{X_{D_H}}{D_H}\right)}^2+{\left(\left(-2\right)\frac{X_{\mathrm{Re}}}{\operatorname{Re}}\right)}^2}=0.0231 $$
(30)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ataei, M., Sadegh Moghanlou, F., Noorzadeh, S. et al. Heat transfer and flow characteristics of hybrid Al2O3/TiO2–water nanofluid in a minichannel heat sink. Heat Mass Transfer 56, 2757–2767 (2020). https://doi.org/10.1007/s00231-020-02896-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02896-9

Keywords

Navigation