Skip to main content
Log in

Assessment and evaluation of cellulase production using ragi (Eleusine coracana) husk as a substrate from thermo-acidophilic Aspergillus fumigatus JCM 10253

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The cellulase production by filamentous fungi Aspergillus fumigatus JCM 10253 was carried out using agro-industrial waste ragi husk as a substrate in the microbial fermentation. The effect of the process parameters such as temperature, substrate concentration, pH, and incubation process time and their interdependence was studied using response surface methodology. The optimum cellulase activities were obtained at 50 °C under the conditions with 1–2% of substrate concentration at pH 2–4 for the incubation period of 7–8 days. The maximum carboxymethyl cellulase (CMCase) and β-glucosidase activities with optimized process variables were 95.2 IU/mL and 0.174 IU/mL, respectively. The morphological characterization of fungus by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) revealed the presence of secondary protein structures. Furthermore, this study demonstrated that the application of ragi husk could be a promising feedstock for value-added industrial products. The thermo-acidophilic nature of isolated strain Aspergillus fumigatus JCM 10253 possessed a significant potential for higher titer of cellulase production that could be further employed for lignocellulosic bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zabed H, Faruq G, Sahu JN, Azirun MS, Hashim R, Nasrulhaq Boyce A (2014) Bioethanol production from fermentable sugar juice. Sci World J. 2014:11. https://doi.org/10.1155/2014/957102

    Article  CAS  Google Scholar 

  2. Balan V (2014) Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN biotechnol. 2014:31. https://doi.org/10.1155/2014/463074

    Article  CAS  Google Scholar 

  3. Latifian M, Hamidi-Esfahani Z, Barzegar M (2007) Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Biores Technol 98:3634–3637

    CAS  Google Scholar 

  4. Medina-Morales M, Martínez-Hernández JL, De La Garza H, Aguilar CN (2011) Cellulolytic enzymes production by solid state culture using pecan nut shell as substrate and support. AJABS 6:196–200

    CAS  Google Scholar 

  5. El-Shishtawy RM, Mohamed SA, Asiri AM, Abu-bakr MG, Ibrahim IH, Al-Talhi HA (2014) Solid fermentation of wheat bran for hydrolytic enzymes production and saccharification content by a local isolate Bacillus megatherium. BMC Biotechnol 14:29

    PubMed  PubMed Central  Google Scholar 

  6. Arora R, Behera S, Sharma NK, Singh R, Yadav YK, Kumar S (2014) Biochemical conversion of rice straw (Oryza sativa L.) to bioethanol using thermotolerant isolate K. marxianus NIRE-K3. In: Proceedings of exploring and basic sciences for Next Generation Frontiers. Elsevier, New Delhi, pp 143–146.

  7. Mallerman J, Papinutti L, Levin L (2015) Characterization of β-glucosidase produced by the white rot fungus Flammulina velutipes. J Microbiol Biotechnol 25:57–65

    CAS  PubMed  Google Scholar 

  8. Andrade CM, Pereira N Jr, Antranikian G (1999) Extremely thermophilic microorganisms and their polymer-hidrolytic enzymes. Rev Microbiol 30:287–298

    CAS  Google Scholar 

  9. Saroj P, Manasa P, Narasimhulu K (2018) Characterization of thermophilic fungi producing extracellular lignocellulolytic enzymes for lignocellulosic hydrolysis under solid-state fermentation. Bioresour Bioprocess 5:31

    Google Scholar 

  10. Bellundagi V, Umesh KB, Ravi SC (2016) Growth dynamics and forecasting of finger millet (ragi) production in Karnataka. Econ Aff 61(2):195–201

    Google Scholar 

  11. Jampala P, Tadikamalla S, Preethi M, Ramanujam S, Uppuluri KB (2017) Concurrent production of cellulase and xylanase from Trichoderma reesei NCIM 1186: enhancement of production by desirability-based multi-objective method. 3 Biotech 7:14

    PubMed  PubMed Central  Google Scholar 

  12. Srikanth R, Siddartha G, Reddy CHS, Harish B, Ramaiah MJ, Uppuluri KB (2015) Antioxidant and anti-inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization. Carbohyd Polym 123:8–16

    CAS  Google Scholar 

  13. Ahamed A, Vermette P (2008) Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem Eng J 40:399–407

    CAS  Google Scholar 

  14. Ahamed A, Vermette P (2010) Effect of mechanical agitation on the production of cellulases by Trichoderma reesei RUT-C30 in a draft-tube airlift bioreactor. Biochem Eng J 49:379–387

    CAS  Google Scholar 

  15. Shajahan S, Moorthy IG, Sivakumar N, Selvakumar G (2017) Statistical modeling and optimization of cellulase production by Bacillus licheniformis NCIM 5556 isolated from the hot spring, Maharashtra, India. J King Saud Univ Sci 29:302–310

    Google Scholar 

  16. Kumar A, Gautam A, Dutt D (2016) Co-Cultivation of Penicillium sp. AKB-24 and Aspergillus nidulans AKB-25 as a cost-effective method to produce cellulases for the hydrolysis of pearl millet stover. Fermentation 2:12

    Google Scholar 

  17. Mandels M, Weber J (1969) Prod Cellul ACS Publ 95:391–414

    CAS  Google Scholar 

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  19. Ghose T (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    CAS  Google Scholar 

  20. Grover AK, MacMurchie DD, Cushley RJ (1977) Studies on almond emulsin β d-glucosidase I. Isolation and characterization of a bifunctional isozyme. Biochim et Biophys Acta (BBA)-Enzymol 482:98–108

    CAS  Google Scholar 

  21. Kovács K, Szakacs G, Zacchi G (2009) Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride. Biores Technol 100:1350–1357

    Google Scholar 

  22. Zakaria B, Nassar H, Amr SA, El-Gendy NS (2015) Applying factorial design and response surface methodology to enhance microbial denitrogenation by tween 80 and yeast extract. Pet Sci Technol 33:880–892

    CAS  Google Scholar 

  23. Bai H, Wang H, Junde Sun MI, Han M, Huang Y, Han X, Yang Q (2013) Production, purification and characterization of novel beta glucosidase from newly isolated Penicillium simplicissimum H-11 in submerged fermentation. EXCLI J 12:528

    PubMed  PubMed Central  Google Scholar 

  24. Manan M (2017) The morphology and structure of red pigment producing fungus: Monascus purpureus. J Microbiol Exp 5:00138

    Google Scholar 

  25. González-Ramírez AI, Ramírez-Granillo A, Medina-Canales MG, Rodríguez-Tovar AV, Martínez-Rivera MA (2016) Analysis and description of the stages of Aspergillus fumigatus biofilm formation using scanning electron microscopy. BMC Microbiol 16:243

    PubMed  PubMed Central  Google Scholar 

  26. Ramage G, Rajendran R, Gutierrez-Correa M, Jones B, Williams C (2011) Aspergillus biofilms: clinical and industrial significance. FEMS Microbiol Lett 324:89–97

    CAS  PubMed  Google Scholar 

  27. Villena G, Gutiérrez-Correa M (2007) Morphological patterns of Aspergillus niger biofilms and pellets related to lignocellulolytic enzyme productivities. Lett Appl Microbiol 45:231–237

    CAS  PubMed  Google Scholar 

  28. Krishna C (2005) Solid-state fermentation systems—an overview. Crit Rev Biotechnol 25:1–30

    CAS  PubMed  Google Scholar 

  29. Herculano PN, Porto TS, Moreira KA, Pinto GA, Souza-Motta CM, Porto ALF (2011) Cellulase production by Aspergillus japonicus URM5620 using waste from castor bean (Ricinus communis L.) under solid-state fermentation. Appl Biochem Biotechnol 165:1057–1067

    CAS  PubMed  Google Scholar 

  30. Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Olajuyigbe FM, Nlekerem CM, Ogunyewo OA (2016) Production and characterization of highly thermostable β-glucosidase during the biodegradation of methyl cellulose by Fusarium oxysporum. Biochem Res Int. https://doi.org/10.1155/2016/3978124

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gautam S, Bundela P, Pandey A, Khan J, Awasthi M, Sarsaiya S (2011) Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol Res Int. https://doi.org/10.4061/2011/810425

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu D, Zhang R, Yang X, Wu H, Xu D, Tang Z, Shen Q (2011) Thermostable cellulase production of Aspergillus fumigatus Z5 under solid-state fermentation and its application in degradation of agricultural wastes. Int Biodeterior Biodegrad 65:717–725

    CAS  Google Scholar 

  34. Soni R, Nazir A, Chadha B (2010) Optimization of cellulase production by a versatile Aspergillus fumigatus fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of solka floc and bagasse. Ind Crops Prod 31:277–283

    CAS  Google Scholar 

  35. Mehboob N, Asad MJ, Asgher M, Gulfraz M, Mukhtar T, Mahmood RT (2014) Exploring thermophilic cellulolytic enzyme production potential of Aspergillus fumigatus by the solid-state fermentation of wheat straw. Appl Biochem Biotechnol 172:3646–3655

    CAS  PubMed  Google Scholar 

  36. Mallek-Fakhfakh H, Fakhfakh J, Masmoudi N, Rezgui F, Gargouri A, Belghith H (2017) Agricultural wastes as substrates for β-glucosidase production by Talaromyces thermophilus: role of these enzymes in enhancing waste paper saccharification. Prep Biochem Biotechnol 47:414–423

    CAS  PubMed  Google Scholar 

  37. Bharti AK, Kumar A, Kumar A, Dutt D (2018) Exploitation of Parthenium hysterophorous biomass as low-cost substrate for cellulase and xylanase production under solid-state fermentation using Talaromyces stipitatus MTCC 12687. J Radiat Res Appl Sci 11:271–280

    CAS  Google Scholar 

  38. Richard TL, Veeken AH, De Wilde V, Hamelers H (2004) Air-filled porosity and permeability relationships during solid-state fermentation. Biotechnol Prog 20:1372–1381

    CAS  PubMed  Google Scholar 

  39. Gao J, Weng H, Zhu D, Yuan M, Guan F, Xi Y (2008) Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Biores Technol 99:7623–7629

    CAS  Google Scholar 

  40. Sandhya C, Sumantha A, Szakacs G, Pandey A (2005) Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem 40:2689–2694

    CAS  Google Scholar 

  41. Gautam A, Kumar A, Dutt D (2015) Production of cellulase-free xylanase by Aspergillus flavus ARC-12 using pearl millet stover as the substrate under solid-state fermentation. J Adv Enzym Res 1:1–9

    Google Scholar 

  42. Kumar B, Bhardwaj N, Alam A, Agrawal K, Prasad H, Verma P (2018) Production, purification and characterization of an acid/alkali and thermo tolerant cellulase from Schizophyllum commune NAIMCC-F-03379 and its application in hydrolysis of lignocellulosic wastes. AMB EXPRESS 8:173

    PubMed  PubMed Central  Google Scholar 

  43. Narasimha G, Sridevi A, Buddolla V, Subhosh CM, Rajasekhar RB (2006) Nutrient effects on production of cellulolytic enzymes by Aspergillus niger. Afr J Biotech 5:472–476

    CAS  Google Scholar 

  44. Akula S, Golla N (2018) Optimization of cellulase production by Aspergillus niger isolated from forest soil. Open Biotechnol J 12:256–269

    CAS  Google Scholar 

  45. Fernandes TG, López JA, Silva LA, Polizeli MdLT, Silva DP, Ruzene DS, Carvalho ML, Carvalho ÍF (2018) Prospecting of soybean hulls as an inducer carbon source for the cellulase production. Prep Biochem Biotechnol 48:743–749

    CAS  PubMed  Google Scholar 

  46. Romero M, Aguado J, González L, Ladero M (1999) Cellulase production by Neurospora crassa on wheat straw. Enzyme and Microb Technol 25:244–250

    CAS  Google Scholar 

  47. Xia L, Cen P (1999) Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry. Process Biochem 34:909–912

    CAS  Google Scholar 

  48. Grigorevski-Lima A, Da Vinha F, Souza D, Bispo A, Bon E, Coelho R, Nascimento R (2009) Aspergillus fumigatus thermophilic and acidophilic endoglucanases. Appl Biochem Biotechnol 155:18–26

    Google Scholar 

  49. El-Nahrawy S, Metwally M, El-Kodoos A, Rizk Y, Belal E-SB, Shabana SA, El-Refai IM (2017) Optimization of culture conditions for production of cellulase by Aspergillus tubingensis KY615746 using rice straw waste. Environ Biodivers Soil Security 1:177–189

    Google Scholar 

  50. Xu X, Lin M, Zang Q, Shi S (2018) Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. Biores Technol 247:88–95

    CAS  Google Scholar 

  51. Delabona PS, Pirota RDPB, Codima CA, Tremacoldi CR, Rodrigues A, Farinas CS (2013) Effect of initial moisture content on two Amazon rainforest Aspergillus strains cultivated on agro-industrial residues: biomass-degrading enzymes production and characterization. Ind Crops Prod 42:236–242

    CAS  Google Scholar 

  52. Silva VCT, Coto ALS, Souza RC, Neves MBS, Gomes E, Bonilla-Rodriguez GO (2016) Effect of pH, temperature, and chemicals on the endoglucanases and β-glucosidases from the thermophilic fungus Myceliophthora heterothallica F.2.1.4. obtained by solid-state and submerged cultivation. Biochem Res Int. https://doi.org/10.1155/2016/9781216

    Article  Google Scholar 

  53. Saini A, Aggarwal NK, Yadav A (2017) Cost-effective cellulase production using Parthenium hysterophorus biomass as an unconventional lignocellulosic substrate. 3 Biotech 7:12

    PubMed  PubMed Central  Google Scholar 

  54. Sun Y-X, Shen B-B, Han H-Y, Lu Y, Zhang B-X, Gao Y-F, Hu B-Z, Hu X-M (2018) Screening of potential IL-tolerant cellulases and their efficient saccharification of IL-pretreated lignocelluloses. RSC Adv 8:30957–30965

    CAS  Google Scholar 

  55. Preetha B, Viruthagiri T (2007) Application of response surface methodology for the biosorption of copper using Rhizopus arrhizus. J Hazard Mater 143:506–510

    CAS  PubMed  Google Scholar 

  56. Sherief A, El-Tanash A, Atia N (2010) Cellulase production by Aspergillus fumigatus grown on mixed substrate of rice straw and wheat bran. Res J Microbiol 5:199–211

    CAS  Google Scholar 

  57. Sarkar N, Aikat K (2014) Aspergillus fumigatus NITDGPKA3 provides for increased cellulase production. Int J Chem Eng. 2014:1–9. https://doi.org/10.1155/2014/959845

    Article  CAS  Google Scholar 

  58. Gilna V, Khaleel K (2011) Cellulase enzyme activity of Aspergillus fumigatus from mangrove soil on lignocellulosic substrate. Recent Res Sci Technol 3:132–134

    CAS  Google Scholar 

  59. Elsa C, Kumar M, Baskar G (2015) Optimized production of cellulase using fruit waste and its application in bioethanol production. Int J Pharma Bio Sci 6(2):1005–1013

    Google Scholar 

  60. Bagewadi ZK, Ninnekar HZ (2015) Production, purifiation and characterization of endoglucanase from Aspergillus fumigatus and enzymatic hydrolysis of lignocellulosic waste. Int J Biotechnol Biomed Sci 1:25–32

    Google Scholar 

  61. Ang S, Shaza E, Adibah Y, Suraini A, Madihah M (2013) Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem 48:1293–1302

    CAS  Google Scholar 

  62. Mohapatra S, Padhy S, Mohapatra PKD, Thatoi H (2018) Enhanced reducing sugar production by saccharification of lignocellulosic biomass, Pennisetum species through cellulase from a newly isolated Aspergillus fumigatus. Biores Technol 253:262–272

    CAS  Google Scholar 

  63. Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein chem Elsevier.

  64. Bai H, Wang H, Sun J, Irfan M, Han M, Huang Y, Han X, Yang Q (2013) Purification and characterization of beta 1,4-glucanases from Penicillium simplicissimum H-11. BioResources 8:3657–3671

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the facility provided by SAIF, IIT Bombay for FTIR analysis, and also the support provided by the Department of Biotechnology, National Institute of Technology Warangal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramjeet Saroj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saroj, P., P, M. & Narasimhulu, K. Assessment and evaluation of cellulase production using ragi (Eleusine coracana) husk as a substrate from thermo-acidophilic Aspergillus fumigatus JCM 10253. Bioprocess Biosyst Eng 44, 113–126 (2021). https://doi.org/10.1007/s00449-020-02428-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02428-z

Keywords

Navigation