Skip to main content
Log in

Continuity and diversity of Roman pottery production at Famars (northern France) in the 2nd–4th centuries AD: insights from the pottery waste

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Grey and cream ware were widely produced and traded in Roman towns in Northern France (a region known as Civitas Nerviorum). A large production centre of grey and cream ware in northern France was Famars, where 15 pottery kilns functioned between the 2nd and 4th centuries ad. In order to identify the raw materials and to reconstruct the technology of grey and cream ware produced at Famars, 51 sherds found in the pottery waste, associated with kilns, were investigated by means of optical microscopy, X-ray fluorescence spectrometry, cold field emission scanning electron microscopy and electron microprobe analysis. The optical microscopy analysis allowed to define the Quartz (Qz), Microfossil-Glauconite (MFG) and Quartz-Microfossil-Glauconite (QzMFG) petrographic groups, as well as the Quartz + Argillaceous Rocks Fragments (QZ + ARF), Microfossil-Glauconite Fine (MFG Fine) and Microfossil-Glauconite + Chamotte (MFG + Chm) variants. The defining components for all groups are quartz, glauconite pellets and microfossils, but in variable proportions. The chemical data support the optical microscopy analysis and reveal the differences between the petrographic groups: Qz sherds are rich in Si and Fe, whereas MFG sherds contain more Ca, Al and K. Firing phases, as seen in scanning electron microscopy analysis, include glass, melilite, clinopyroxene and an Fe aluminosilicate. The matrix of most sherds of the MFG and QzMFG groups shows low sintering and initial vitrification, while the matrix of the Qz group displays mostly extensive and continuous vitrification. The results permitted to identify two kinds of raw materials, most likely originating from local georesources. One raw material, with high Si and Fe, was fired in a reducing kiln atmosphere in order to produce grey ware, while the other, with high Ca, Al and K, was fired in oxidising conditions in order to produce cream ware.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arbabe E (2013) Du Peuple à La Cité. Vie politique et instituions en Gaule Chevelue depuis l’indépendans jusq’à la fin des Julio-Claudiens. PhD thesis, Université Paris I-Panthéon Sorbonne, 619 pp

  • Arnold DE (1988) Ceramic theory and cultural process. Cambridge University Press, Cambridge, 268 pp

    Google Scholar 

  • Aubry M-P (1986) Paleogene calcareous nannoplankton biostratigraphy of northwestern Europe. Palaeogeogr Palaeoclimatol Palaeoecol 55(2–4):267–334. https://doi.org/10.1016/0031-0182(86)90154-9

    Article  Google Scholar 

  • Basso E, Capelli C, Riccardi MP, Cabella R (2008) A particular temper: mineralogical and petrographic characterisation of ceramic fabrics with glauconite inclusions. Archeosciences 32:93–97. https://doi.org/10.4000/archeosciences.1001

    Article  Google Scholar 

  • Batigne-Vallet C (2001) Note sur les choix techniques attestés dans quelques ateliers de céramiques communes de Gaule du Nord pendant la période romaine. Société Française d’Étude de la Céramique Antique en Gaule, Actes du Congrès de Lille-Bavay, pp:207–208

  • Borgers B, Quinn PS, Degryse P, De Bie M, Welkenhuysen K (2019) Roman pottery production in Civitas Tungrorum, Central Belgium, during the 1st–3rd centuries AD. Archaeometry, pp:1–18. https://doi.org/10.1111/arcm.12508

  • Buckley HA, Bevan JC, Brown KM, Johnson LR, Farmer VC (1978) Glauconite and celadonite: two separate mineral species. Mineral Mag 42(323):373–382. https://doi.org/10.1180/minmag.1978.042.323.08

    Article  Google Scholar 

  • Clotuche R (2013) La ville antique de Famars. Musée de Valenciennes, Valenciennes, 136 pp

    Google Scholar 

  • Cultrone G, Rodriguez-Navarro C, Sebastian E, Cazalla O, De La Torre MJ (2001) Carbonate and silicate phase reactions during ceramic firing. Eur J Mineral 13:621–634. https://doi.org/10.1127/0935-1221/2001/0013-0621

    Article  Google Scholar 

  • Cuomo di Caprio N (1972) Proposta di classificazione delle fornaci per ceramica e laterizi nell’area italiana. Dalla preistoria a tutta l’epoca romana. Sibrium 11:371–461

    Google Scholar 

  • De Bonis A, Cultrone G, Grifa C, Langella A, Leone AP, Mercurio M, Morra V (2017) Different shades of red: the complexity of mineralogical and physicochemical factors influencing the colour of ceramics. Ceram Int 43:8065–8074. https://doi.org/10.1016/j.ceramint.2017.03.127

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals. Pearson Prentice Hall London, 696 pp. https://doi.org/10.1180/DHZ

  • Delmaire R, Leman-Delerive L, Seillier C, Thollard P (1997) Carte Archéologique de La Gaule. Le Nord. Editions de la Maison des Sciences de l’Homme 59, Paris, 500 pp

  • Desoignies J (1967) Carte géologique détaillée de la France. Valenciennes. Service de la Carte Géologique de la France, Paris

  • Dondi M, Ercolani G, Fabbri B, Marsigli M (1998) An approach to the chemistry of pyroxenes formed during firing of Ca-rich silicate ceramics. Clay Miner 33(3):443–452. https://doi.org/10.1180/000985598545741

    Article  Google Scholar 

  • Dondi M, Ercolani G, Fabbri B, Marsigli M (1999a) Chemical composition of melilite formed during the firing of carbonate-rich and iron-containing ceramic bodies. J Am Ceram Soc 82(2):465–468. https://doi.org/10.1111/j.1551-2916.1999.tb20088.x

    Article  Google Scholar 

  • Dondi M, Guarini G, Raimondo M (1999b) Trends in the formation of crystalline and amorphous phases during the firing of clay bricks. Tile & Brick Int 15(3):176–183

    Google Scholar 

  • Dubois S, Willems S, Chaidron C (2009) Estampilles sur Mortiers en Céramique Commune Claire au Chef-Lieu des Ambiens. Société Française d’Étude de la Céramique Antique en Gaule, Actes du Congrès de Langres, pp:677–688

  • Gál Á, Ionescu C, Bajusz M, Codrea VA, Hoeck V, Barbu-Tudoran L, Simon V, Mureşan-Pop M, Csók Z (2018) Composition, technology and provenance of Roman pottery from Napoca (Cluj-Napoca, Romania). Clay Miner 53(4):621–641. https://doi.org/10.1180/clm.2018.47

    Article  Google Scholar 

  • Georgakopoulou M, Hein A, Müller NS, Kiriatzi E (2017) Development and calibration of a WDXRF routine applied to provenance studies on archaeological ceramics. X-ray Spectrom 46(3): 186–199. 10.002/xrs.2745

  • Gliozzo E, Fortina CX, Memmi Turbanti I, Turchiano M, Volpe G (2005) Cooking and painted ware from San Giusto (Lucera, Foggia): the production cycle, from the supply of raw materials to the commercialization of products. Archaeometry 47(1):13–29. https://doi.org/10.1111/j.1475-4754.2005.00185.x

    Article  Google Scholar 

  • Heimann RB, Maggetti M (2019) The struggle between thermodynamics and kinetics: phase evolution of ancient and historical ceramics. Chapter 6 in EMU Notes in Mineralogy 20: 233–281

  • Herbin P, Roger D, Herbin P, Calonne E (2005) Une production de céramique commune à pâte claire à Famars (Nord). In: Polfer M (ed), Artisanat et économie romaine (Italie et provinces occidentales). Actes du 3e Colloque d’Erpeldange, France, 14–16 Octobre 2004. Éditions Monique Mergoil Montagnac, pp 147–168

  • Hoeck V, Ionescu C, Ghergari L, Precup C (2009) Towards mineralogical and geochemical reference groups for some Bronze Age ceramics from Transylvania (Romania). Studia UBB Geol 54(2):41–51. https://doi.org/10.5038/1937-8602.54.2.8

    Article  Google Scholar 

  • Homann M (1991) Die Diatomeen der Fur-Formation (Alttertiar) aus dem Limfjord-Gebiet, Nordjutland/Danemark. Geol Jahrb Reihe A A123:3–285

    Google Scholar 

  • Hutton CO, Seelye FT (1941) Composition and properties of some New Zealand glauconites. Am Miner 26:595–604

    Google Scholar 

  • Ionescu C, Hoeck V (2017) Electron microprobe analysis (EMPA). In: Hunt AMW (ed) The Oxford handbook of archaeological ceramic analysis. Oxford University Press, Oxford UK, pp 288–304. https://doi.org/10.1093/oxfordhb/9780199681532.013.17

    Chapter  Google Scholar 

  • Ionescu C, Hoeck V, Ghergari L (2011) Electron microprobe analysis of ancient ceramics: a case study from Romania. Appl Clay Sci 53(3):466–475. https://doi.org/10.1016/j.clay.2010.09.009

    Article  Google Scholar 

  • Kaasschieter JPH (1961) Foraminifera of the Eocene of Belgium. Mémoire nr. 147, Institut royal des sciences Naturelles de Belgique, 351 pp

  • Kilikoglou V, Maniatis Y, Grimanis A (1988) The effect of purification and firing of clays on trace element provenance studies. Archaeometry 30(1):37–46. https://doi.org/10.1111/j.1475-4754.1988.tb00433.x

    Article  Google Scholar 

  • King C, Gale AS, Barry TL (2016) A revised correlation of tertiary rocks in the British Isles and adjacent area of NW Europe. Geol Soc London Sp Rep 27:107–153. https://doi.org/10.1144/SR27

    Article  Google Scholar 

  • Labarre D, Willems S (2019) Une officine de potiers entre la période augustéenne et la période flavienne. Société Française d’Étude de la Céramique Antique en Gaule Actes du Congrès de Maubeuge-Bavay, pp:13–24

  • Lawless AS (2012) Nature, distribution, origin and economics of glauconite in carbonate–phosphate–glauconite surficial deposits on Central Chatham Rise, Southwest Pacific. MSci thesis, The University of Waikato, p 279

  • Letsch J, Noll W (1983) Phase formation in several ceramic subsystems at 600°C - 1000°C as a function of oxygen fugacity. Berich Deutsch Keram Gesell 7:259–267

  • Longuépée H, Cousineau P (2006) Constraints on the genesis of ferrian illite and aluminum-rich glauconite: potential impact on sedimentology and isotopic studies. Can Miner 44(4):967–980. https://doi.org/10.2113/gscanmin.44.4.967

    Article  Google Scholar 

  • Loridant F, Ménard R (2002) Les Mortiers dts ‘de Bavay’. Une des Productions de Pont-sur-Sambre (Nord). Société Française d’Étude de la Céramique Antique en Gaule, Actes du Congrès de Bayeux, pp 431-435

  • Maggetti M (1979) Mineralogisch-petrographische Untersuchung des Scherbenmaterials der urnenfelderzeitlichen Siedlung Elchinger Kreuz, Ldkr. Neu-Ulm/Donau. Kat Prähist Staatssamml München 19:141–172

    Google Scholar 

  • Maggetti M (1982) Phase analysis and its significance for technology and origin. In: Olin JS, Franklin AD (eds), Archaeological ceramics. Smithsonian Institute Press, pp 121–133

  • Maggetti M (2001) Chemical analyses of ancient ceramics: what for? Chimia 55:923–930

    Google Scholar 

  • Maniatis Y, Tite MS (1981) Technological examination of Neolithic–Bronze Age pottery from Central and Southeast Europe and from the Near East. J Archaeol Sci 8(1):59–76. https://doi.org/10.1016/0305-4403(81)90012-1

    Article  Google Scholar 

  • Maniatis Y, Simopoulos A, Kostikas A, Perdikatsis V (1983) Effect of reducing atmosphere on minerals and iron oxides developed in fired ceramics: the role of Ca. J Amer Ceram Soc 66(11):773–781. https://doi.org/10.1111/j.1151-2916.1983.tb10561.x

    Article  Google Scholar 

  • Maritan L, Mazzoli C, Nodari L, Russo U (2005) Second Iron Age grey pottery from Este (northeastern Italy): study of provenance and technology. Appl Clay Sci 29(1):31–44. https://doi.org/10.1016/j.clay.2004.09.003

    Article  Google Scholar 

  • Molera J, Pradell T, Vendrell-Saz M (1998) The colours of Ca-rich ceramic pastes: origin and characterization. Appl Clay Sci 13:187–202. https://doi.org/10.1016/S0169-1317(98)00024-6

    Article  Google Scholar 

  • Neuvonen KJ (1952) Thermochemical investigation of the åkermanite gehlenite series. Bull Comm Geéol Finlande 26(158):1–50

    Google Scholar 

  • Odin GS, Matter A (1981) De glauconiarum origine. Sedimentology 28(5):611–641. https://doi.org/10.1111/j.1365-3091.1981.tb01925.x

    Article  Google Scholar 

  • Pomerol C (1967) Les minéraux argileux dans le tertiaire du bassin de Paris. Problèmes d'origine et de genèse. Bull Gr Français Argiles 19(1:115–123

    Article  Google Scholar 

  • Pradell T, Molera J, García-Vallés M, Vendrell-Saz M (1995) Study and characterization of reduced ceramics. In: Vendrell-Saz M, Picon M, Cuomo di Caprio N (Eds), Proceedings of the 2nd European meeting on ancient ceramics 1993. Publicacions de la Generalitat de Catalunya, Barcelona, pp 417–430

  • Privitera A, Guido A, Mastandrea A, Rao A (2015) Morphological and mineralogical evolution of microfossils during the heating process: a contribution to the archaeometric study of ceramics. Rend Fis Acc Lincei 26:499–512. https://doi.org/10.1007/s12210-015-0443-0

    Article  Google Scholar 

  • Quinn PS (2008) The occurrence and research potential of microfossils in inorganic archaeological materials. Geoarchaeology 23:275–291. https://doi.org/10.1002/gea.20213

    Article  Google Scholar 

  • Quinn PS (2013) Ceramic petrography. The interpretation of archaeological pottery and related artefacts in thin section. Archaeopress, Oxford, 260 pp

    Google Scholar 

  • Reedy CL (2008) Thin-section petrography of stone and ceramic cultural materials. Archetype Publications Ltd, London, 260 pp

    Google Scholar 

  • Riccardi MP, Messiga B, Duminuco P (1999) An approach to the dynamics of clay firing. Appl Clay Sci 15:393–409. https://doi.org/10.1016/S0169-1317(99)00032-0

    Article  Google Scholar 

  • Rudnick RL, Gao S (2014) Composition of the continental crust. Treat Geochem 3:1–51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6

    Article  Google Scholar 

  • Rye OW (1981) Pottery technology. Principles and reconstruction. Manuals on archaeology 4, terrarium Washington, 150 pp

  • Sabine M, Styles MT, Young BR (1982) Gehlenite, an exomorphic mineral from Carneal, Co. Antrim, Northern Ireland. Rept Inst Geol Sci 82(1):61–63

    Google Scholar 

  • Sánchez-Navas A, Martín-Algarra A, Eder V, Jagannadha Reddy B (2008) Color, mineralogy and composition of Upper Jurassic West Siberian glauconite: useful indicators of paleoenvironment. Can Miner 46:1545–1564. https://doi.org/10.3749/canmin.46.5.00

    Article  Google Scholar 

  • Santacreu DA, Melis MG, Vicens GM (2016) Landscape construction in southern Sardinia in the 4th millennium BC: an approach using clay procurement. Period Miner 85:137–152

    Google Scholar 

  • Schneider H (1927) A study of glauconite. J Geol 35(4):289–310. https://doi.org/10.1086/623417

    Article  Google Scholar 

  • Šegvić B, Ugarković M, Süssenberger A, Mählmann RF, Moscariello A (2016) Compositional properties and provenance of Hellenistic pottery from the necropolis of Issa with evidences on the cross-Adriatic and the Mediterranean-scale trade. Mediterr Archaeol Archaeom 16(1):23–52. https://doi.org/10.5281/zenodo.44773

    Article  Google Scholar 

  • Shafik S, Watkins DK, Shin IC (1998) Calcareous nannofossil Paleogene biostratigraphy, Côte d’Ivoire–Ghana marginal ridge, eastern equatorial Atlantic. In: Mascle J, Lohmann GP, Moullade M (eds) Proceedings of the ocean drilling program scientific results, vol 159, pp 413–431

    Google Scholar 

  • Shalvi G, Shoval S, Bar S, Gilboa A (2019) On the potential of microbeam analyses in study of the ceramics, slip and paint of Late Bronze Age White Slip II ware: an example from the Canaanite site Tel Esur. Appl Clay Sci 168:324–339. https://doi.org/10.1016/j.clay.2018.11.019

    Article  Google Scholar 

  • Shoval S, Gaft M, Beck P, Kirsh Y (1993) The thermal behavior of limestone and monocrystalline calcite tempers during firing and their use in ancient vessels. J Therm Anal 40:263–273. https://doi.org/10.1007/BF02546577

    Article  Google Scholar 

  • Steurbaut E (1998) High-resolution holostratigraphy of Middle Paleocene to Early Eocene strata in Belgium and adjacent areas. Palaeontogr Abt A 247(5–6):91–156

    Google Scholar 

  • Swan V (1984) The pottery kilns of Roman Britain. Royal Commission on Historical Monuments, supplementary series 5, HMSO London, pp 91–112

  • Thierrin-Michael G, Zanco A, Galetti G (2002) Gallo-Roman pottery from kilns in Oberwinterthur (NE Switzerland): two reference groups. In: Kilikoglou V, Hein A, Maniatis Y (eds), Modern trends in scientific studies on ancient ceramics. Papers presented at the 5th European Meeting on Ancient Ceramics, Greece, 1999, Archaeopress, Oxford UK, pp 299–304

  • Tite MS, Maniatis Y (1975) Examination of ancient pottery using the scanning electron microscope. Nature 257:122–123. https://doi.org/10.1038/257122a0

    Article  Google Scholar 

  • Tschegg C, Ntaflos T, Hein I (2009) Thermally triggered two-stage reaction of carbonates and clay during ceramic firing—a case study on Bronze Age Cypriot ceramics. Appl Clay Sci 43:69–78. https://doi.org/10.1016/j.clay.2008.07.029

    Article  Google Scholar 

  • Valanciene V, Siauciunas R, Valancius Z (2014) Evaluation of glauconite rock color stability during firing. Appl Clay Sci 99:110–119. https://doi.org/10.1016/j.clay.2014.06.019

    Article  Google Scholar 

  • Vertet H, Picon M, Vichy M (1970) Note sur la composition des céramiques du IVe siècle de Lezoux. Rev Archéol Centre France IX:243–250

  • Willems S (2005) Roman pottery in the Tongeren Reference Collection: Mortaria and coarse wares, vol 1. Vlaams Institute Onroerend Erfgoed, Tongeren

    Google Scholar 

  • Willems S (2019) La céramique gallo-romaine du Haut-Empire produite chez les Ménapiens, Atrébates et Nerviens. Dynamiques économiques et identités territoriales. PhD thesis, Université Paris Nanterre, Paris, 1430 pp

  • Willems S, Borgers B (2016) Pottery workshops at Fanum Martis (northern France). Analysis of pottery production and consumption. RCRF Acta 44:429–438

    Google Scholar 

  • Willems S, Ledauphin A (2019) Les productions précoces de Bavay (Nord), un répertoire sous influence. Société Française d’Étude de la Céramique Antique en Gaule, Actes du Congrès de Maubeuge-Bavay, pp:267–272

  • Willems S, Borgers B, Clerget J, Clotuche R, Teysseire G, Tixador A (2019) Fanum Martis (Famars, Nord): une officine de potiers au coeur de l’agglomération. In: Denti M, Villette M (eds), Archéologie des espaces artisanaux (Rennes 2014). Coll Monogr d’Archéol Méditerr Hors-série 9:257–270

Download references

Acknowledgments

The authors wish to thank the Institut National de Recherches Archéologiques Préventives (INRAP) and the Service Régional de l’Archéologie (SRA) Nord-Picardie (France) for their permission to sample the ceramic sherds from the archaeological site at Famars. Both institutions have also supported the scientific analysis of the material financially through their respective projects ‘Caractérisation des productions céramiques dans le nord du Bassin parisien’, and ‘Fanum Martis. Une agglomération à vocation religieuse, commerciale et militaire à la frontière du territoire nervien. Pagus Fanomartensis, un terroir spécifique?’. The authors also thank Dr Volker Hoeck (Paris Lodron University, Salzburg) for suggestions which helped to improve the paper, and Dr Ramona Balc (Babeş-Bolyai University, Cluj-Napoca) for aid in the determination of microfossils. B.B. acknowledges support by the Austrian Science Fund through the FWF project T-1085G. C.I. acknowledges financial support by the Excellence Research Program (Romanian Ministry of Education and Ministry of Research) through the UEFISCDI/CNCS project PN-III-P4-ID-PCE-2016-0229, as well as support of the Russian Government within the Program of competitive growth of Kazan Federal University. Thanks are due to Mrs Monica Mereu (Babeş-Bolyai University, Cluj-Napoca) for computer-assisted drawings. Finally, the authors would like to thank the two anonymous referees for their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corina Ionescu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borgers, B., Ionescu, C., Willems, S. et al. Continuity and diversity of Roman pottery production at Famars (northern France) in the 2nd–4th centuries AD: insights from the pottery waste. Archaeol Anthropol Sci 12, 221 (2020). https://doi.org/10.1007/s12520-020-01113-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-020-01113-2

Keywords

Navigation