Skip to main content
Log in

Characteristic of heat transfer in flow of Cross nanofluid during melting process

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

This struggle is part of a responsible method for the development of nanoscience and nanotechnology inspect closely of nanofluid. The conformist melting phenomena for steady Falkner–Skan flow of Cross nanofluid is considered. The Buongiorno model is used to discuss the thermal efficacies of the fluid flows in the presence of nanoparticles. MATLAB’s scheme of bvp4c is adopted to solve these non-linear ODEs and graphical results are presented in the form of graphs and tables. The main findings of the study are velocity boost up for melting heat and velocity ratio parameter. Concentration goes down for the Brownian motion of molecules and arises for thermophoresis diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

u,v :

Velocity components

x,y :

Space coordinate

a,b,c,m :

Positive constants

β:

Wedge angle parameter

\(U_{w} (x,t)\) :

Stretching velocity

\(U_{e} (x,t)\) :

Free stream velocity

\(T_{0}\) :

Initial temperature

\(T_{\infty }\) :

Ambient temperature of fluid

\(T_{m}\) :

Melting temperature

\(\tau\) :

Cauchy stress tensor

\(k\) :

Thermal conductivity

\(Pr\) :

Prandtl number

s :

Velocity ratio parameter

Nu :

Nusselt number

Re :

Reynold number

t :

Time

\(\mu_{0}\) :

Zero shear rate viscosity

A 1 :

First Rivlin–Erickson tensor

μ :

Infinite shear rate viscosity

p :

Pressure

I :

Identity tensor

\(\Gamma\) :

Relaxation time constant

\(\psi_{{\left( {x,\,y,t} \right)}}\) :

Stokes stream function

Sc:

Schmidt number

μ :

Viscosity

A :

Unsteadiness parameter

q w :

Wall shear stress

\(c_s\) :

Surface heat capacity

M :

Melting parameter

c f :

Skin friction

n :

Power law index

\(\dot{\gamma }\) :

Shear strain

\(\eta\) :

Dimensionless variable

c p :

Specific heat

R r :

Chemical reaction parameter

σ :

Reaction rate parameter

ρ :

Density

C :

Fluid Concentration

T :

Fluid Temperature

\(\theta_{w}\) :

Temperature ratio parameter

We:

Weissenberg Number

\(\alpha_{m}\) :

Thermal diffusivity

References

  • Ali M, Sultan F, Azeem Khan W, Shahzad M (2019) Exploring the physical aspects of nanofuid with entropy generation. Appl Nanosci. https://doi.org/10.1007/s13204-019-01173-4

    Article  Google Scholar 

  • Ali M, Shahzad M, Sultan F, Azeem Khan W (2020) Numerical analysis of chemical reaction and non-linear radiation for magneto-cross nanofuid over a stretching cylinder. Appl Nanosci. https://doi.org/10.1007/s13204-020-01385-z

    Article  Google Scholar 

  • Bongers H, Van OJ, Goey DL (2002) Intrinsic low-dimensional manifold method extended with diffusion. P Combust Inst 29:1371–1378

    Article  CAS  Google Scholar 

  • Choi US, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab., IL (United States)

  • Ellahi R, Hassan M, Zeeshan A (2015) Shape effects of nanosize particles in u-H2O nanofluid on entropy generation. Int J Heat Mass Transf 81:449–456

    Article  CAS  Google Scholar 

  • Ellahi R, Zeeshan A, Hussain F, Asadollahi A (2019) Peristaltic blood flow of couple stress fluid suspended with nanoparticles under the influence of chemical reaction and activation energy. Symmetry 11(2):276

    Article  CAS  Google Scholar 

  • Gorban AN, Shahzad M (2011) The Michaelis-Menten-Stueckelberg theorem. Entropy 13:966

    Article  CAS  Google Scholar 

  • Hayat T, Rashid M, Imtiaz M, Alsaedi A (2017) MHD effects on a thermo-solutal stratified nanofluid flow on an exponentially radiating stretching sheet. J Appl Mech Tech Phys 58:214

    Article  CAS  Google Scholar 

  • Hsiao K (2017) To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-nanofluid with parameters control method. Energy 130:486–499

    Article  Google Scholar 

  • Khan WA, Ali M (2019) Recent developments in modeling and simulation of entropy generation for dissipative cross material with quartic autocatalysis. Appl Phys A 125:397. https://doi.org/10.1007/s00339-019-2686-6

    Article  CAS  Google Scholar 

  • Khan WA, Sultan F, Ali M, Shahzad M, Khan M, Irfan M (2019) Consequences of activation energy and binary chemical reaction for 3D flow of cross-nanofluid with radiative heat transfer. J Brazil Soc Mech Sci Eng 41(1):4

    Article  Google Scholar 

  • Khan WA, Ali M, Irfan M, Shahzad M, Khan M, Sultan F (2019) A rheological analysis of nanofuid subjected to melting heat transport characteristics. Appl Nanosci. https://doi.org/10.1007/s13204-019-01067-5

    Article  Google Scholar 

  • Khan Hashim M (2016) Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet. AIP Adv 5:101203

    Google Scholar 

  • Kuo BL (2003) Application of the differential transformation method to the solutions of Falkner-Skan wedge flow. Acta Mech 164:161–174

    Article  Google Scholar 

  • Mahanthesh B, Gireesha BJ, Shehzad SA, Rauf A, Kumar PBS (2018) Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition. Phys B Condens Matter 537:98–104

    Article  CAS  Google Scholar 

  • Mustafa M, Khan JA, Hayat T, Alsaedi A (2017) Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy. Int J Heat Mass Transf 108:1340–1346

    Article  CAS  Google Scholar 

  • Oztop HF, Abu-Nada E (2008) Int J Heat Fluid Flow 29:1326

    Article  Google Scholar 

  • Rajagopal KR, Gupta AS, Na TY (1982) A note on the Falkner-Skan flows of a non-Newtonian fluid. Int J Non-Linear Mech 18(4):313–320

    Article  Google Scholar 

  • Sandeep N, Animasaun IL (2017) Heat transfer in wall jet flow of magnetic-nanofluids with variable magnetic field. Alexandria Eng J 56:263–269

    Article  Google Scholar 

  • Shahzad M, Sultan F (2018) Complex reactions and dynamics. Adv Chem Kinet InTech Rijeka. https://doi.org/10.5772/intechopen.70502

    Article  Google Scholar 

  • Shahzad M, Rehman S, Bibi R, Wahab HA, Abdullah S, Ahmed S (2015) Measuring the complex behavior of the SO2 oxidation reaction. Comput Ecol Softw 5:254

    Google Scholar 

  • Shahzad M, Sultan F, Haq I, Wahab HA, Naeem M, Haq F (2016) Computing the low dimension manifold in dissipative dynamical systems. Nucleus 53:107–113

    Google Scholar 

  • Shahzad M, Haq I, Sultan F, Wahab A, Faiz F, Rahman G (2017) Slow manifolds in chemical kinetics. J Chem Soc Pak 38:39

    Google Scholar 

  • Shahzad M, Ali M, Sultan F, Khan WA, Hussain Z (2019) Theoretical analysis of cross-nanofluid flow with nonlinear radiation and magnetohydrodynamics. Indian J Phys. https://doi.org/10.1007/s12648-019-01669-3

    Article  Google Scholar 

  • Sheikholeslami M, Bandpy MG, Ellahi R, Zeeshan A (2014) Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces. J Magn Magn Mater 369:69–80

    Article  CAS  Google Scholar 

  • Sultan F, Shahzad M, Ali M, Khan WA (2019) The reaction routes comparison with respect to slow invariant manifold and equilibrium points. AIP Adv 9:015212. https://doi.org/10.1063/1.5050265

    Article  CAS  Google Scholar 

  • Waqas M, Farooq M, Khan MI, Alsaedi A, Hayat T, Yasmeen T (2016) Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. Int J Heat Mass Transf 102:766–772

    Article  Google Scholar 

  • Wu J, Chen Z, Dovichi NJ (2000) Reaction rate, activation energy, and detection limit for the reaction of 5-furoylquinoline- 3-carboxaldehyde with neurotransmitters in artificial cerebrospinal fluid. J Chromatogr B Biomed Sci Appl 741(1):85–88

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehboob Ali.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Shahzad, M., Sultan, F. et al. Characteristic of heat transfer in flow of Cross nanofluid during melting process. Appl Nanosci 10, 5201–5210 (2020). https://doi.org/10.1007/s13204-020-01532-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01532-6

Keywords

Navigation