Skip to main content
Log in

Higher order linear stability and instability of Reissner–Nordström’s Cauchy horizon

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider smooth solutions of the wave equation, on a fixed black hole region of a subextremal Reissner–Nordström (asymptotically flat, de Sitter or anti-de Sitter) spacetime, whose restrictions to the event horizon have compact support. We provide criteria, in terms of surface gravities, for the waves to remain in \(C^l\), \(l\geqslant 1\), up to and including the Cauchy horizon. We also provide sufficient conditions for the blow up of solutions in \(C^1\) and \(H^1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Angelopoulos, Y., Aretakis, S., Gajic, D.: Late-time asymptotics for the wave equation on spherically symmetric stationary spacetimes. Adv. Math. 323, 529–621 (2018)

    Article  MathSciNet  Google Scholar 

  2. Cardoso, V., Costa, J.L., Kyriakos, D., Hintz, P., Jansen, A.: Quasinormal modes and strong cosmic censorship. Phys. Rev. Lett. 120, 031103 (2018)

    Article  Google Scholar 

  3. Costa, J.L., Franzen, A.: Bounded energy waves on the black hole interior of Reissner–Nordström–de Sitter. Ann. Henri Poincaré 18, 3371 (2017)

    Article  MathSciNet  Google Scholar 

  4. Costa, J.L., Girão, P.M., Natário, J., Silva, J.D.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant. Part 1: well posedness and breakdown criterion. Class. Quant. Gravity 32, 015017 (2015)

    Article  Google Scholar 

  5. Costa, J.L., Girão, P.M., Natário, J., Silva, J.D.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant. Part 2: structure of the solutions and stability of the Cauchy horizon. Commun. Math. Phys. 339, 903–947 (2015)

    Article  MathSciNet  Google Scholar 

  6. Costa, J.L., Girão, P.M., Natário, J., Silva, J.D.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant. Part 3: mass inflation and extendibility of the solutions. Ann. PDE 3, 8 (2017)

    Article  MathSciNet  Google Scholar 

  7. Costa, J.L., Girão, P.M., Natário, J., Silva, J.D.: On the occurrence of mass inflation for the Einstein–Maxwell-scalar field system with a cosmological constant and an exponential Price law. Commun. Math. Phys. 361, 289 (2018)

    Article  MathSciNet  Google Scholar 

  8. Dafermos, M., Luk, J.: The interior of dynamical vacuum black holes I: the \(C^0\)-stability of the Kerr Cauchy horizon. arXiv:1710.01722v1

  9. Dafermos, M., Shlapentokh-Rothman, Y.: Time-translation invariance of scattering maps and blue-shift instabilities on Kerr black hole spacetimes. Commun. Math. Phys. 350(3), 985–1016 (2017)

    Article  MathSciNet  Google Scholar 

  10. Dafermos, M., Shlapentokh-Rothman, Y.: Rough initial data and the strength of the blue-shift instability on cosmological black holes with \(\Lambda > 0\). Class. Quant. Gravity 35(19), 195010 (2018)

    Article  MathSciNet  Google Scholar 

  11. Dyatlov, S.: Asymptotics of linear waves and resonances with applications to black holes. Commun. Math. Phys. 335, 1445–1485 (2015)

    Article  MathSciNet  Google Scholar 

  12. Franzen, A.T.: Boundedness of massless scalar waves on Reissner–Nordström interior backgrounds. Commun. Math. Phys. 343, 601 (2016)

    Article  Google Scholar 

  13. Gajic, D.: Linear waves in the interior of extremal black holes I. Commun. Math. Phys. 353, 717 (2017)

    Article  MathSciNet  Google Scholar 

  14. Gajic, D.: Linear waves in the interior of extremal black holes II. Henri Poincaré 18, 4005 (2017)

    Article  MathSciNet  Google Scholar 

  15. Gajic, D., Luk, J.: The interior of dynamical extremal black holes in spherical symmetry (2017). arXiv:1709.09137v2

  16. Hintz, P.: Boundedness and decay of scalar waves at the Cauchy horizon of the Kerr spacetime. Comment. Math. Helv. 92(4), 801–837 (2017)

    Article  MathSciNet  Google Scholar 

  17. Hintz, P., Vasy, A.: Analysis of linear waves near the Cauchy horizon of cosmological black holes. J. Math. Phys. 58(8), 081509 (2017)

    Article  MathSciNet  Google Scholar 

  18. Holzegel, G., Smulevici, J.: Decay properties of Klein–Gordon fields on Kerr-AdS spacetimes. Commun. Pure Appl. Math. 66(11), 1751–1802 (2013)

    Article  MathSciNet  Google Scholar 

  19. Kehle, C.: Uniform boundedness and continuity at the Cauchy horizon for linear waves on Reissner–Nordström–AdS black holes. arXiv:1812.06142v1

  20. Kehle, C., Shlapentokh-Rothman, Y.: A scattering theory for linear waves on the interior of Reissner–Nordström black holes. Ann. Henri Poincaré (2019). https://doi.org/10.1007/s00023-019-00760-z

    Article  MATH  Google Scholar 

  21. Luk, J., Oh, S.-J.: Proof of linear instability of Reissner–Nordström Cauchy horizon under scalar perturbations. Duke Math. J. 166(3), 437–493 (2017)

    Article  MathSciNet  Google Scholar 

  22. Luk, J., Oh, S.-J.: Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat initial data I. The interior of the black hole region. arXiv:1702.05715

  23. Luk, J., Oh, S.-J.: Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat initial data II. The exterior of the black hole region. arXiv:1702.05716

  24. Luk, J., Sbierski, J.: Instability results for the wave equation in the interior of Kerr black holes. J. Funct. Anal. 271(7), 1948–1995 (2016)

    Article  MathSciNet  Google Scholar 

  25. Sbierski, J.: On the initial value problem in general relativity and wave propagation in black-hole spacetimes. Ph.D. thesis

  26. Van de Moortel, M.: Stability and instability of the sub-extremal Reissner–Nordström black hole interior for the Einstein–Maxwell–Klein–Gordon equations in spherical symmetry. Commun. Math. Phys. 360, 103 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Natário and J. D. Silva for useful comments on a preliminary version of this paper. We also thank Anne Franzen for sharing and allowing us to use Fig. 1. This work was partially supported by FCT/Portugal through UID/MAT/04459/2013 and Grant (GPSEinstein) PTDC/MAT-ANA/1275/2014.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to João L. Costa or Pedro M. Girão.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, J.L., Girão, P.M. Higher order linear stability and instability of Reissner–Nordström’s Cauchy horizon. Anal.Math.Phys. 10, 40 (2020). https://doi.org/10.1007/s13324-020-00380-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-020-00380-5

Keywords

Mathematics Subject Classification

Navigation