Skip to main content
Log in

Influence of refining process and utilization of different slags on inclusions, titanium yield and total oxygen content of Ti-stabilized 321 stainless steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Ti-stabilized 321 stainless steel was prepared using an electric arc furnace, argon oxygen decarburization (AOD) furnace, ladle furnace (LF), and continuous casting processes. In addition, the effect of refining process and utilization of different slags on the evolution of inclusions, titanium yield, and oxygen content was systematically investigated by experimental and thermodynamic analysis. The results reveal that the total oxygen content (TO) and inclusion density decreased during the refining process. The spherical CaO–SiO2–Al2O3–MgO inclusions existed in the 321 stainless steel after the AOD process. Moreover, prior to the Ti addition, the spherical CaO–Al2O3–MgO–SiO2 inclusions were observed during LF refining process. However, Ti addition resulted in multilayer CaO–Al2O3–MgO–TiOx inclusions. Two different samples were prepared by conventional CaO–Al2O3-based slag (Heat-1) and TiO2-rich CaO–Al2O3-based slag (Heat-2). The statistical analysis revealed that the density of inclusions and the TiOx content in CaO–Al2O3–MgO–TiOx inclusions found in Heat-2 sample are much lower than those in the Heat-1 sample. Furthermore, the TO content and Ti yield during the LF refining process were controlled by using TiO2-rich calcium aluminate synthetic slag. These results were consistent with the ion–molecule coexistence theory and FactSage™7.2 software calculations. When TiO2-rich CaO–Al2O3-based slag was used, the TiO2 activity of the slag increased, and the equilibrium oxygen content significantly decreased from the AOD to LF processes. Therefore, the higher TiO2 activity of slag and lower equilibrium oxygen content suppressed the undesirable reactions between Ti and O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G.V. Prasad Reddy, P.M. Dinesh, R. Sandhya, K. Laha, T. Jayakumar, Int. J. Fatigue 92 (2016) 272–280.

  2. M. Haj, H. Mansouri, R. Vafaei, G. R. Ebrahimi, A. Kanani, Int. J. Miner. Metall. Mater. 20 (2013) 529–534.

    Article  Google Scholar 

  3. H.Y. Luo, Y.B. Zhang, H.D. Li, J.L. Lv, Y. Ma, J. Alloy. Compd. 696 (2017) 1235–1243.

    Article  Google Scholar 

  4. M.W. Spindler, G. Knowles, S. Jacques, C. Austin, Mater. High Temp. 31 (2014) 284–304.

    Article  Google Scholar 

  5. P. Huilgol, K.R. Udupa, K.U. Bhat, Int. J. Miner. Metall. Mater. 25 (2018) 190–198.

    Article  Google Scholar 

  6. J.H. Park, S.B. Lee, H.R. Gaye, Metall. Mater. Trans. B 39 (2008) 853–861.

    Article  Google Scholar 

  7. J.Y. Li, G.G. Cheng, Q. Ruan, J.X. Pan, X.R. Chen, ISIJ Int. 58 (2018) 1042–1051.

    Article  Google Scholar 

  8. H.G. Zheng, W.Q. Chen, Q. Liu, P.F. Duan, L.R. Zhao, H.L. Wang, J. Iron Steel Res. 17 (2005) No. 1, 14–18.

    Google Scholar 

  9. Q. Ruan, G.Y. Qian, J.X. Pan, X.R. Chen, G.G. Cheng, Steelmaking 32 (2016) No. 4, 39–43.

    Google Scholar 

  10. H.G. Zheng, W.Q. Chen, S.M. Bo, M.S. Liu, Iron and Steel 40 (2005) No. 5, 21–24.

    Google Scholar 

  11. J.Y. Li, G.G. Cheng, Q. Ruan, J.X. Pan, X.R. Chen, Metall. Mater. Trans. B 49 (2018) 2357–2369.

    Article  Google Scholar 

  12. X. Yin, Y.H. Sun, Y.D. Yang, X.F. Bai, M. Barati, A. Mclean, Metall. Mater. Trans. B 47 (2016) 3274–3284.

    Article  Google Scholar 

  13. G.Y. Qian, F. Jiang, G.G. Cheng, C.S. Wang, Metall. Res. Technol. 111 (2014) 229–231.

    Article  Google Scholar 

  14. K. Choi, Y. Kang, I. Sohn, Metall. Mater. Trans. B 47 (2016) 1520–1525.

    Article  Google Scholar 

  15. J.Y. Yu, Y. Kang, I. Sohn, Metall. Mater. Trans. B 45 (2014) 113–122.

    Article  Google Scholar 

  16. H.G. Zheng, W.Q. Chen, J. Univ. Sci. Technol. Beijing 13 (2006) 16–20.

    Article  Google Scholar 

  17. C.W. Seo, S.H. Kim, S.K. Jo, M.O. Suk, S.M. Byun, Metall. Mater. Trans. B 41 (2010) 790–797.

    Article  Google Scholar 

  18. R. Lencina, A. Malfliet, B. Touzo, M.X. Guo, AISTech 2018 (2018) 1343–1350.

    Google Scholar 

  19. X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, F. Wang, Metall. Mater. Trans. B 42 (2011) 1150–1180.

    Article  Google Scholar 

  20. X.M. Yang, M. Zhang, C.B. Shi, G.M. Chai, J. Zhang, Metall. Mater. Trans. B 43 (2012) 241–266.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (Grant No. 51374020), the State Key Laboratory of Advanced Metallurgy at the University of Science and Technology Beijing (USTB), and the Jiuquan Iron and Steel Group Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-guang Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Xr., Cheng, Gg., Hou, Yy. et al. Influence of refining process and utilization of different slags on inclusions, titanium yield and total oxygen content of Ti-stabilized 321 stainless steel. J. Iron Steel Res. Int. 27, 913–921 (2020). https://doi.org/10.1007/s42243-020-00444-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00444-7

Keywords

Navigation