Skip to main content
Log in

Transfers from distant retrograde orbits to low lunar orbits

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The stable distant retrograde orbits (DROs) around the Moon are considered as potential parking orbits for cislunar stations that are important facilities in cislunar space. Transfer orbits from DROs to lunar orbits will be fundamental and routine for operations of the cislunar stations. This paper studies transfer orbits from DROs to low lunar orbits with inclinations between 0° and 90°. Ten DROs are selected for the construction of transfers. The planar transfer orbits from each DRO to the LLO with zero inclination are firstly obtained and compared in the planar circular restricted three-body problem (PCR3BP) to reveal basic characteristics of the transfer solutions. The planar transfers are classified into several types based on characteristics. Each type is discussed in details, especially their transfer cost and time. Based on the planar transfers, nonplanar transfer orbits are constructed in the circular restricted three-body problem (CR3BP). Some nonplanar transfers are selected and compared to show effects of the LLO inclination. Then, the planar transfer orbits are refined in the planar bicircular restricted four-body problem (PBR4BP) with the gravity of the Sun. The comparison between results in the PCR3BP and PBR4BP shows that the gravity of the Sun can increase transfer options and reduce the transfer cost. Further analysis is carried out based on the realistic results in the PBR4BP, including the ballistic capture, departure and insertion locations, transfer cost and time, etc. The results are useful for selecting parking DROs and designing transport systems to the Moon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  • Belbruno, E., Miller, J.: A ballistic lunar capture trajectory for the Japanese spacecraft hiten. Jet Propulsion Laboratory, IOM 312/90.4–1371-EAB (1990)

  • Belbruno, E., Miller, J.: Sun-perturbed Earth-to-Moon transfers with ballistic capture. J. Guid. Control Dyn. 16, 770–775 (1993)

    Article  ADS  Google Scholar 

  • Belbruno, E.: Lunar capture orbits, a method of constructing Earth–Moon trajectories and the lunar GAS mission. In: AIAA Paper 971054, Proceedings of the AIAA/DGLR/JSASS International Electric Propulsion Conference (1987)

  • Boudad, K., Howell, K., Davis, D.: Near rectilinear halo orbits in cislunar space within the context of the bicircular four-body problem. In: 2nd IAA/AAS SciTech Forum, Moscow, Russia (2019)

  • Broucke, R.A.: Periodic orbits in the restricted three body problem with earth-moon masses (1968)

  • Bucci, L., Colagrossi, A., Lavagna, M.: Rendezvous in lunar near rectilinear halo orbits. Adv. Astronaut. Sci. Technol. 1(1), 39–43 (2018)

    Article  ADS  Google Scholar 

  • Capdevila L., Guzzetti D., Howell K.: Various transfer options from Earth into distant retrograde orbits in the vicinity of the Moon. In: AAS/AIAA Space Flight Mechanics Meeting, p. 118 (2014)

  • Capdevila, L., Howell, K.: A transfer network linking Earth, Moon, and the triangular libration point regions in the Earth-Moon system. Adv. Space Res. 62(7), 1826–1852 (2018)

    Article  ADS  Google Scholar 

  • Conte, D.Di, Carlo, M., Ho, K., David, B., Massimiliano, V.: Earth-Mars transfers through Moon distant retrograde orbits. Acta Astron. 143, 372–379 (2018)

    Article  Google Scholar 

  • Crusan J., Bleacher J., Caram J., et al.: NASA’s Gateway: An Update on Progress and Plans for Extending Human Presence to Cislunar Space//2019 IEEE Aerospace Conference. IEEE, pp. 1–19 (2019)

  • Davis, D.C., Bhatt, S.A., Howell, K.C., et al.: Orbit maintenance and navigation of human space-craft at cislunar near rectilinear halo orbits. 27th AAS/AIAA Space Flight Mechanics Meeting, San-Antonio, TX, USA, February 5–9, 2017, Paper AAS 17-269, 20 p. (2017)

  • Demeyer, J., Gurfil, P.: Transfer to distant retrograde orbits using manifold theory. J. Guid. Control Dyn. 30(5), 1261–1267 (2007)

    Article  ADS  Google Scholar 

  • Enright, P.J., Conway, B.A.: Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. J. Guid. Control Dyn. 15, 994–1002 (1992)

    Article  ADS  Google Scholar 

  • Folta D.C., Bosanac N., Cox A., Howell, K.: The lunar IceCube mission design: construction of feasible transfer trajectories with a constrained departure. In: AAS/AIAA Space Flight Mechanics Meeting, Napa, California (2016)

  • Guzzetti, D., Zimovan, E.M., Howell, K., et al.: Stationkeeping analysis for spacecraft in lunar near rectilinear halo orbits. In: 27th AAS/AIAA Space Flight Mechanics Meeting, pp. 1–20 (2017)

  • Hénon, M.: Numerical exploration of the restricted problem, V. Astron. Astrophys. 1, 223–238 (1969)

    ADS  MATH  Google Scholar 

  • Howell, K., Breakwell, J.: Almost rectilinear halo orbits. Celest. Mech. 32(1), 29–52 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • Howell, K.: Three-dimensional, periodic, ‘halo’ orbits. Celest. Mech. 32(1), 53–71 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • ISECG: The Global Exploration Roadmap (2018). https://www.globalspace-exploration.org/wordpress/wpcontent/isecg/GER_2018_small_mobile.pdf. Retrieved 12 Jun 2018

  • Koon, W.S., Lo, M.W., Marsden, J.E., et al.: Dynamical Systems, the Three-Body Problem and Space Mission Design. California Institute of Technology, Pasadena (2006)

    MATH  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., et al.: Low energy transfer to the Moon. Celest. Mech. Dyn. Astron. 81(1–2), 63–73 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  • Markellos, V.V.: Numerical investigation of the planar restricted three-bodyproblem. Celest. Mech. 10(1), 87–134 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  • Ming, X., Shijie, X.: Exploration of distant retrograde orbits around Moon. Acta Astron. 65(5-6), 853–860 (2009)

    Article  Google Scholar 

  • Ocampo, C., Rosborough, G.: Transfer trajectories for distant retrograde orbiters of the Earth. Adv. Astron. Sci. 82, 1177–1200 (1993)

    Google Scholar 

  • Oshima, K., Topputo, F., Yanao, T.: Low-energy transfers to the Moon with long transfer time. Celest. Mech. Dyn. Astron. 131(1), 4 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Oshima, K.: The use of vertical instability of L1 and L2 planar Lyapunov orbits for transfers from near rectilinear halo orbits to planar distant retrograde orbits in the Earth-Moon system. Celest. Mech. Dyn. Astron. 131(3), 14 (2019)

    Article  ADS  Google Scholar 

  • Scott, C., Spencer, D.: Calculating transfer families to periodic distant retrograde orbits using differential correction. J. Guid. Control Dyn. 33(5), 1592–1605 (2010a)

    Article  ADS  Google Scholar 

  • Scott, C., Spencer, D.: Transfers to sticky distant retrograde orbits. J. Guid. Control Dyn. 33(6), 1940–1946 (2010b)

    Article  ADS  Google Scholar 

  • Short, C., Howell, K., Haapala, A., Dichmann, D.: Mode analysis for long-term behavior in a resonant Earth-Moon trajectory. J. Astronaut. Sci. 64, 156–187 (2017)

    Article  ADS  Google Scholar 

  • Simó, C., Gómez, G., Jorba, Á., Masdemont, J.: The Bicircular Model Near the Triangular Libration Points of the RTBP. From Newton to Chaos. Plenum Press, New York (1995)

    MATH  Google Scholar 

  • Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press Inc, New York (1967)

    MATH  Google Scholar 

  • Topputo, F., Zhang, C.: Survey of direct transcription for low-thrust space trajectory optimization with applications. In: Abstract and Applied Analysis. Hindawi (2014)

  • Topputo, F.: On optimal two-impulse Earth-Moon transfers in a four-body model. Celest. Mech. Dyn. Astron. 117, 279–313 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Trofimov, S., Shirobokov, M., Tselousova, A., et al.: Transfers from near-rectilinear halo orbits to low-perilune orbits and the Moon’s surface. Acta Astron. 167, 260–271 (2020)

    Article  Google Scholar 

  • Whitley, R., Martinez, R.: Options for staging orbits in cislunar space. In: 2016 IEEE Aerospace Conference. IEEE, pp. 1–9 (2016)

  • Winter, O.C.: The stability evolution of a family of simply periodic lunar orbits. Planet. Space Sci. 48(1), 23–28 (2000)

    Article  ADS  Google Scholar 

  • Yagasaki, K.: Sun-perturbed Earth-to-Moon transfers with low energy and moderate flight time. Celest. Mech. Dyn. Astron. 90, 197–212 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • Zimovan, E.M., Howell, K.C., Davis, D.C.: Near rectilinear halo orbits and their application in cis-lunar space. In: 3rd IAA Conference on Dynamics and Control of Space Systems, Moscow, Russia. 20 (2017)

Download references

Acknowledgements

YW thanks the support of the National Natural Science Foundation of China (11872007) and the Fundamental Research Funds for the Central Universities. HZ thanks the support of the Key Research Program of the Chinese Academy of Sciences (ZDRW-KT-2019-1-0102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Wang.

Ethics declarations

Conflict of interest

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the paper submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection on Toward the Moon and Beyond.

Guest Editors: Terry Alfriend, Pini Gurfil and Ryan P. Russell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Wang, Y., Zhang, H. et al. Transfers from distant retrograde orbits to low lunar orbits. Celest Mech Dyn Astr 132, 41 (2020). https://doi.org/10.1007/s10569-020-09982-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-020-09982-4

Keywords

Navigation