Skip to main content
Log in

Increased Sensitivity of Biosensors using Evolutionary Algorithm for Bio-Medical Applications

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The use of bio-medical applications and bio-inspired computing facilitates the diagnosis of human health. The main work of bio-medical applications relies mostly over the biosensors. Biosensor construction are based on piezoelectric, chemical, optical or electronic principles. Field Effect Transistor (FET) based biosensors gain popularity because of some distinct advantages like compact, fast measurement and portable instrumentation. Due to their small size, FET based biosensors are considered as potential candidates for point of care testing. In this paper, we have investigated the sensitivity of FET biosensors based on Evolutionary Algorithm for Bio-Medical (EABM) applications. We have also discussed major limitations in FET based biosensors like inability to detect neutral charged biomolecules and lesser sensitivity. Current mechanism in tunnel FET is based on band to band tunneling and this property is explored to enhance sensitivity of the device. In this paper, sensing is modeled with drain current, while as effect of variation in biomolecule concentration is based on changes in doping concentration and use high dielectric constant materials. The proposed EABM algorithm shows that the optimized value of drain current (sensitivity) is obtained with increase in doping concentrations or dielectric constant at the gate. The results also depict that the proposed EABM approach outperforms existing FET models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. L. C. Clark, C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery," Ann. New York Acad. Sci., v.102, n.1, p.29 (1962). DOI: https://doi.org/10.1111/j.1749-6632.1962.tb13623.x.

    Article  Google Scholar 

  2. P. Bergveld, "Short communications: Development of an ion-sensitive solid-state device for neurophysiological measurements," IEEE Trans. Biomed. Eng., v.BME-17, n.1, p.70 (1970). DOI: https://doi.org/10.1109/TBME.1970.4502688.

    Article  Google Scholar 

  3. S. Caras, J. Janata, "Field effect transistor sensitive to penicillin," Anal. Chem., v.52, n.12, p.1935 (1980). DOI: https://doi.org/10.1021/ac50062a035.

    Article  Google Scholar 

  4. M. J. Schöning, A. Poghossian, "Recent advances in biologically sensitive field-effect transistors (BioFETs)," Analyst, v.127, n.9, p.1137 (2002). DOI: https://doi.org/10.1039/b204444g.

    Article  Google Scholar 

  5. M. Fehr, D. W. Ehrhardt, S. Lalonde, W. B. Frommer, "Minimally invasive dynamic imaging of ions and metabolites in living cells," Curr. Opin. Plant Biol., v.7, n.3, p.345 (2004). DOI: https://doi.org/10.1016/j.pbi.2004.03.015.

    Article  Google Scholar 

  6. H.-J. Park, S. K. Kim, K. Park, S. Y. Yi, J. W. Chung, B. H. Chung, M. Kim, "Monitoring of C-reactive protein using ion sensitive field effect transistor biosensor," Sens. Lett., v.8, n.2, p.233 (2010). DOI: https://doi.org/10.1166/sl.2010.1248.

    Article  Google Scholar 

  7. A. B. Kharitonov, M. Zayats, A. Lichtenstein, E. Katz, I. Willner, "Enzyme monolayer-functionalized field-effect transistors for biosensor applications," Sensors Actuators, B Chem., v.70, n.1–3, p.222 (2000). DOI: https://doi.org/10.1016/S0925-4005(00)00573-6.

    Article  Google Scholar 

  8. C. P. Price, "Regular review: Point of care testing," Br. Med. J., v.322, n.7297, p.1285 (2001). DOI: https://doi.org/10.1136/bmj.322.7297.1285.

    Article  Google Scholar 

  9. P. Bergveld, "Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years," Sensors Actuators, B Chem., v.88, n.1, p.1 (2003). DOI: https://doi.org/10.1016/S0925-4005(02)00301-5.

    Article  Google Scholar 

  10. W. Y. Choi, B.-G. Park, J. D. Lee, T.-J. K. Liu, "Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec," IEEE Electron Device Lett., v.28, n.8, p.743 (2007). DOI: https://doi.org/10.1109/LED.2007.901273.

    Article  Google Scholar 

  11. Y. Khatami, K. Banerjee, "Steep subthreshold slope n- and p-type Tunnel-FET devices for low-power and energy-efficient digital circuits," IEEE Trans. Electron Devices, v.56, n.11, p.2752 (2009). DOI: https://doi.org/10.1109/TED.2009.2030831.

    Article  Google Scholar 

  12. R. Asra, M. Shrivastava, K. V. R. M. Murali, R. K. Pandey, H. Gossner, V. R. Rao, "A tunnel FET for VDD scaling below 0.6 v with a CMOS-comparable performance," IEEE Trans. Electron Devices, v.58, n.7, p.1855 (2011). DOI: https://doi.org/10.1109/TED.2011.2140322.

    Article  Google Scholar 

  13. A. S. Verhulst, D. Leonelli, R. Rooyackers, G. Groeseneken, "Drain voltage dependent analytical model of tunnel field-effect transistors," J. Appl. Phys., v.110, n.2 (2011). DOI: https://doi.org/10.1063/1.3609064.

    Article  Google Scholar 

  14. M. G. Bardon, H. P. Neves, R. Puers, C. Van Hoof, "Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions," IEEE Trans. Electron Devices, v.57, n.4, p.827 (2010). DOI: https://doi.org/10.1109/TED.2010.2040661.

    Article  Google Scholar 

  15. D. Sarkar, K. Banerjee, "Fundamental limitations of conventional-FET biosensors: Quantum-mechanical-tunneling to the rescue," in Device Research Conference - Conference Digest, DRC. DOI: https://doi.org/10.1109/DRC.2012.6256950.

    Chapter  Google Scholar 

  16. R. Narang, K. V. S. Reddy, M. Saxena, R. S. Gupta, M. Gupta, "A dielectric-modulated tunnel-FET-based biosensor for label-free detection: Analytical modeling study and sensitivity analysis," IEEE Trans. Electron Devices, v.59, n.10, p.2809 (2012). DOI: https://doi.org/10.1109/TED.2012.2208115.

    Article  Google Scholar 

  17. R. Narang, M. Saxena, R. S. Gupta, M. Gupta, "Dielectric modulated tunnel field-effect transistor-a biomolecule sensor," IEEE Electron Device Lett., v.33, n.2, p.266 (2012). DOI: https://doi.org/10.1109/LED.2011.2174024.

    Article  Google Scholar 

  18. Y. Pei-Wen, H. Che-Wei, H. Yu-Jie, C. Min-Cheng, L. Hsin-Hao, L. Shey-Shi, L. Chih-Ting, "A device design of an integrated CMOS poly-silicon biosensor-on-chip to enhance performance of biomolecular analytes in serum samples," Biosens. Bioelectron., v.61, p.112 (2014). DOI: https://doi.org/10.1016/j.bios.2014.05.010.

    Article  Google Scholar 

  19. K. Kim, C. Park, D. Kwon, D. Kim, M. Meyyappan, S. Jeon, J.-S. Lee, "Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity," Biosens. Bioelectron., v.77, p.695 (2016). DOI: https://doi.org/10.1016/j.bios.2015.10.008.

    Article  Google Scholar 

  20. N. Aroonyadet, X. Wang, Y. Song, H. Chen, R. J. Cote, M. E. Thompson, R. H. Datar, C. Zhou, "Highly scalable, uniform, and sensitive biosensors based on top-down indium oxide nanoribbons and electronic enzyme-linked immunosorbent assay," Nano Lett., v.15, n.3, p.1943 (2015). DOI: https://doi.org/10.1021/nl5047889.

    Article  Google Scholar 

  21. S. Cheng, S. Hideshima, S. Kuroiwa, T. Nakanishi, T. Osaka, "Label-free detection of tumor markers using field effect transistor (FET)-based biosensors for lung cancer diagnosis," Sensors Actuators, B Chem., v.212, p.329 (2015). DOI: https://doi.org/10.1016/j.snb.2015.02.038.

    Article  Google Scholar 

  22. S. Hideshima, R. Sato, S. Inoue, S. Kuroiwa, T. Osaka, "Detection of tumor marker in blood serum using antibody-modified field effect transistor with optimized BSA blocking," Sensors Actuators, B Chem., v.161, n.1, p.146 (2012). DOI: https://doi.org/10.1016/j.snb.2011.10.001.

    Article  Google Scholar 

  23. Z. Bao, J. Sun, X. Zhao, Z. Li, S. Cui, Q. Meng, Y. Zhang, T. Wang, Y. Jiang, "Top-down nanofabrication of silicon nanoribbon field effect transistor (Si-NR FET) for carcinoembryonic antigen detection," Int. J. Nanomedicine, v.12, p.4623 (2017). DOI: https://doi.org/10.2147/IJN.S135985.

    Article  Google Scholar 

  24. S. Mansouri Majd, A. Salimi, "Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film," Anal. Chim. Acta, v.1000, p.273 (2018). DOI: https://doi.org/10.1016/j.aca.2017.11.008.

    Article  Google Scholar 

  25. H.-C. Chen, Y.-T. Chen, R.-Y. Tsai, M.-C. Chen, S.-L. Chen, M.-C. Xiao, C.-L. Chen, M.-Y. Hua, "A sensitive and selective magnetic graphene composite-modified polycrystalline-silicon nanowire field-effect transistor for bladder cancer diagnosis," Biosens. Bioelectron., v.66, p.198 (2015). DOI: https://doi.org/10.1016/j.bios.2014.11.019.

    Article  Google Scholar 

  26. Y. Cui, C. M. Lieber, "Functional nanoscale electronic devices assembled using silicon nanowire building blocks," Science, v.291, n.5505, p.851 (2001). DOI: https://doi.org/10.1126/science.291.5505.851.

    Article  Google Scholar 

  27. N. Yang, X. Chen, T. Ren, P. Zhang, D. Yang, "Carbon nanotube based biosensors," Sensors Actuators, B Chem., v.207, n.PartA, p.690 (2015). DOI: https://doi.org/10.1016/j.snb.2014.10.040.

    Article  Google Scholar 

  28. H. R. Byon, H. C. Choi, "Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications," J. Am. Chem. Soc., v.128, n.7, p.2188 (2006). DOI: https://doi.org/10.1021/ja056897n.

    Article  Google Scholar 

  29. X. Tang, S. Bansaruntip, N. Nakayama, E. Yenilmez, Y.-I. Chang, Q. Wang, "Carbon nanotube DNA sensor and sensing mechanism," Nano Lett., v.6, n.8, p.1632 (2006). DOI: https://doi.org/10.1021/nl060613v.

    Article  Google Scholar 

  30. A. Star, J.-C. P. Gabriel, K. Bradley, G. Grüner, "Electronic detection of specific protein binding using nanotube FET devices," Nano Lett., v.3, n.4, p.459 (2003). DOI: https://doi.org/10.1021/nl0340172.

    Article  Google Scholar 

  31. C. Kataoka-Hamai, Y. Miyahara, "Label-free detection of DNA by field-effect devices," IEEE Sensors J., v.11, n.12, p.3153 (2011). DOI: https://doi.org/10.1109/JSEN.2011.2167143.

    Article  Google Scholar 

  32. J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy, R. Murphy, "Nanowire transistors without junctions," Nat. Nanotechnol., v.5, n.3, p.225 (2010). DOI: https://doi.org/10.1038/nnano.2010.15.

    Article  Google Scholar 

  33. H. Im, X.-J. Huang, B. Gu, Y.-K. Choi, "A dielectric-modulated field-effect transistor for biosensing," Nat. Nanotechnol., v.2, n.7, p.430 (2007). DOI: https://doi.org/10.1038/nnano.2007.180.

    Article  Google Scholar 

  34. K. Boucart, A. M. Ionescu, "Length scaling of the Double Gate Tunnel FET with a high-K gate dielectric," Solid-State Electron., v.51, n.11–12, p.1500 (2007). DOI: https://doi.org/10.1016/j.sse.2007.09.014.

    Article  Google Scholar 

  35. A. M. Ionescu, H. Riel, "Tunnel field-effect transistors as energy-efficient electronic switches," Nature, v.479, n.7373, p.329 (2011). DOI: https://doi.org/10.1038/nature10679.

    Article  Google Scholar 

  36. R. S. Kushwah, M. Chauhan, P. Shrivastava, S. Akashe, "Modelling and simulation of FinFET circuits with predictive technology models," Radioelectron. Commun. Syst., v.57, n.12, p.553 (2014). DOI: https://doi.org/10.3103/S0735272714120048.

    Article  Google Scholar 

  37. E. O. Kane, "Zener tunneling in semiconductors," J. Phys. Chem. Solids, v.12, n.2, p.181 (1960). DOI: https://doi.org/10.1016/0022-3697(60)90035-4.

    Article  Google Scholar 

Download references

Acknowledgements

Preliminary materials of this article were reported at the conference Futuristic Trends in Networks and Computing Technologies FTNCT (Nagar, 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Ahmad Pindoo.

Ethics declarations

ADDITIONAL INFORMATION

Irfan Ahmad Pindoo and Sanjeet K. Sinha

The authors declare that they have no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347020060047 with DOI: https://doi.org/10.20535/S0021347020060047

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pindoo, I.A., Sinha, S.K. Increased Sensitivity of Biosensors using Evolutionary Algorithm for Bio-Medical Applications. Radioelectron.Commun.Syst. 63, 308–318 (2020). https://doi.org/10.3103/S0735272720060047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272720060047

Navigation