Skip to main content
Log in

Complex Effective Dielectric Permittivity and Characteristic Impedance of Tunable Coplanar Line

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

An analysis of complex dielectric permittivity and characteristic impedance of micromechanically tunable coplanar line is presented. The coplanar line parameters tuning is achieved by signal line electrode movement above the substrate or the dielectric plate above the surface of line electrodes. A reconfiguration of electromagnetic field with complex nature occurs as a result of such movement in the line. It is described in terms of effective permittivity and characteristic impedance. We studied an influence of physical and geometrical parameters of the line on characteristics of effective permittivity tuning and change in characteristic impedance and line loss. It is found that proposed method for line tuning parameters allows us to obtain a high sensitivity to movement for effective parameters, wherein the level of losses in the line is not deteriorated, and under certain conditions are reduced. These results make it possible to design high-quality tunable resonant elements and phase shifters based on micromechanically controlled coplanar line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. Y. Yamao, N. Akutsu, "SHF-band 3-bit reconfigurable BPF employing pHEMT switch arrays for 5G multiband operation," in Proceedings of European Microwave Conference in Central Europe, EuMCE 2019. URI: https://ieeexplore.ieee.org/abstract/document/8874847.

    Google Scholar 

  2. J. Zhu, C. Jia, C. Wang, K. Li, "An adaptive spectrum allocation algorithm in ultra-dense network," in 2018 10th International Conference on Communication Software and Networks, ICCSN 2018 (Institute of Electrical and Electronics Engineers Inc.). DOI: https://doi.org/10.1109/ICCSN.2018.8488267.

    Chapter  Google Scholar 

  3. M. Kamran Khattak, S. Kahng, M. Salman Khattak, A. Rehman, C. Lee, D. Han, "Low profile, wideband and high gain beamsteering antenna for 5G mobile communication," in 2017 IEEE Antennas and Propagation Society International Symposium, Proceedings (Institute of Electrical and Electronics Engineers Inc.). DOI: https://doi.org/10.1109/APUSNCURSINRSM.2017.8073330.

    Chapter  Google Scholar 

  4. F. C. Chen, R. S. Li, J. P. Chen, "A tunable dual-band bandpass-to-bandstop filter using p-i-n diodes and varactors," IEEE Access, v.6, p.46058 (2018). DOI: https://doi.org/10.1109/ACCESS.2018.2862887.

    Article  Google Scholar 

  5. A. M. E. Safwat, F. Podevin, P. Ferrari, A. Vilcot, "Tunable bandstop defected ground structure resonator using reconfigurable dumbbell-shaped coplanar waveguide," IEEE Trans. Microw. Theory Tech., v.54, n.9, p.3559 (2006). DOI: https://doi.org/10.1109/TMTT.2006.880654.

    Article  Google Scholar 

  6. A. K. Horestani, Z. Shaterian, J. Naqui, F. Martin, C. Fumeaux, "Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas," IEEE Trans. Antennas Propag., v.64, n.9, p.3766 (2016). DOI: https://doi.org/10.1109/TAP.2016.2585183.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Jinde, S. M. Rathod, A. D. Chaudhari, A. Jeyakumar, "Optically controlled circular microstrip antenna using photoconductive switch," in 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics, UPCON 2017 (Institute of Electrical and Electronics Engineers Inc.). DOI: https://doi.org/10.1109/UPCON.2017.8251071.

    Chapter  Google Scholar 

  8. H. V. Nguyen, A. Sharaiha, "Design of miniaturized and tunable antenna by integrating BST thin film varactor," in International Conference on Advanced Technologies for Communications (IEEE Computer Society). DOI: https://doi.org/10.1109/ATC.2018.8587467.

    Chapter  Google Scholar 

  9. A. F. Azarnaminy, R. Mansour, "A combline tunable filter with loss compensation circuit," in IEEE MTT-S International Microwave Symposium Digest (Institute of Electrical and Electronics Engineers Inc.). DOI: https://doi.org/10.1109/MWSYM.2018.8439360.

    Chapter  Google Scholar 

  10. D. Mercier, A. Niembro-Martin, H. Sibuet, C. Baret, J. Chautagnat, C. Dieppedale, C. Bonnard, J. Guillaume, G. Le Rhun, C. Billard, P. Gardes, P. Poveda, "X band distributed phase shifter based on sol-gel BCTZ varactors," in European Microwave Week 2017: “A Prime Year for a Prime Event”, EuMW 2017 - Conference Proceedings; 47th European Microwave Conference, EuMC 2017 (Institute of Electrical and Electronics Engineers Inc.). DOI: https://doi.org/10.23919/EuMC.2017.8231072.

    Chapter  Google Scholar 

  11. A. S. Abdellatif, M. Faraji-Dana, N. Ranjkesh, A. Taeb, M. Fahimnia, S. Gigoyan, S. Safavi-Naeini, "Low loss, wideband, and compact cpw-based phase shifter for millimeter-wave applications," IEEE Trans. Microw. Theory Tech., v.62, n.12, p.3403 (2014). DOI: https://doi.org/10.1109/TMTT.2014.2365539.

    Article  Google Scholar 

  12. Y. Poplavko, Y. Prokopenko, V. Pashkov, V. Molchanov, I. Golubeva, V. Kazmirenko, D. Smigin, "Low loss microwave piezo-tunable devices," in Proceedings of the 36th European Microwave Conference, EuMC 2006. DOI: https://doi.org/10.1109/EUMC.2006.281496.

    Chapter  Google Scholar 

  13. T. W. Lin, K. K. Wei Low, R. Gaddi, G. M. Rebeiz, "High-linearity 5.3-7.0 GHz 3-pole tunable bandpass filter using commercial RF MEMS capacitors," in 2018 48th European Microwave Conference, EuMC 2018 (Institute of Electrical and Electronics Engineers Inc.). DOI: https://doi.org/10.23919/EuMC.2018.8541669.

    Chapter  Google Scholar 

  14. R. Garg, I. Bahl, M. Bozzi, Microstrip Lines and Slotlines (Artech House, Inc., Norwood, MA, 2013). DOI: https://doi.org/10.1017/CBO9781107415324.004.

    Book  Google Scholar 

  15. E. A. Tsyba, I. P. Golubeva, V. Kazmirenko, Y. V. Prokopenko, "Complex effective dielectric permittivity of micromechanically tunable microstrip lines," Radioelectron. Commun. Syst., v.61, n.2, p.72 (2018). DOI: https://doi.org/10.3103/S0735272718020048.

    Article  Google Scholar 

  16. A. S. Chernov, I. P. Golubeva, V. A. Kazmirenko, Y. V. Prokopenko, "Tunable coplanar waveguide," Microsystems, Electron. Acoust., v.23, n.6, p.13 (2018). DOI: https://doi.org/10.20535/2523-4455.2018.23.6.154565.

    Article  Google Scholar 

  17. A. Chernov, I. Golubeva, V. Kazmirenko, Y. Prokopenko, "Losses in the micromechanically tunable coplanar waveguide based line," in 2020 IEEE 40th International Conference on Electronics and Nanotechnology (Institute of Electrical and Electronics Engineers (IEEE), Kyiv). DOI: https://doi.org/10.1109/elnano50318.2020.9088764.

    Chapter  Google Scholar 

  18. Y. M. Poplavko, Physics of Dielectrics (Vyssh. Shkola, Kiev, 1980).

    Google Scholar 

  19. A. I. Akhiezer, I. A. Akhiezer, Electromagnetism and Electromagnetic Waves (Vyssh. Shkola, Moscow, 1985).

    MATH  Google Scholar 

  20. A. D. Grygoryev, Electrodynamics and Microwave Technology (Vyssh. Shkola, Moscow, 1990).

    Google Scholar 

Download references

Acknowledgements

Preliminary materials of this article were reported at the conference ELNANO-2020 (Kyiv, 2020): A. Chernov, I. Golubeva, V. Kazmirenko, Y. Prokopenko, "Losses in the micromechanically tunable coplanar waveguide based line," Proc. of 2020 IEEE 40th Int. Conf. on Electronics and Nanotechnology, ELNANO, 22-24 April 2020, Kyiv, Ukraine. IEEE, 2020. DOI: 10.1109/ELNANO50318.2020.9088764.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem S. Chernov.

Ethics declarations

ADDITIONAL INFORMATION

A. S. Chernov, I. P. Golubeva, V. A. Kazmirenko, and Yu. V. Prokopenko

The authors declare that they have no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347020060011 with DOI: https://doi.org/10.20535/S0021347020060011

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernov, A.S., Golubeva, I.P., Kazmirenko, V.A. et al. Complex Effective Dielectric Permittivity and Characteristic Impedance of Tunable Coplanar Line. Radioelectron.Commun.Syst. 63, 281–288 (2020). https://doi.org/10.3103/S0735272720060011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272720060011

Navigation