Skip to main content
Log in

Effects of quark anomalous magnetic moment on the thermodynamical properties and mesonic excitations of magnetized hot and dense matter in PNJL model

  • Regular Article - Theoretical Physis
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Various thermodynamic quantities and the phase diagram of strongly interacting hot and dense magnetized quark matter are obtained with the 2-flavour Nambu–Jona-Lasinio model with Polyakov loop considering finite values of the anomalous magnetic moment (AMM) of the quarks. Susceptibilities associated with constituent quark mass and traced Polyakov loop are used to evaluate chiral and deconfinement transition temperatures. It is found that, inclusion of the AMM of the quarks in presence of the background magnetic field results in a substantial decrease in the chiral as well as deconfinement transition temperatures in contrast to an enhancement in the chiral transition temperature in its absence. Using standard techniques of finite temperature field theory, the two point thermo-magnetic mesonic correlation functions in the scalar (\(\sigma \)) and neutral pseudoscalar (\(\pi ^0\)) channels are evaluated to calculate the masses of \(\sigma \) and \( \pi ^0 \) considering the AMM of the quarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and has no associated experimental data.]

Notes

  1. The hat symbol on each quantity implies that they are \( 2 \times 2 \) matrices in flavor space.

References

  1. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008). arXiv:0808.3382 [hep-ph]

    ADS  Google Scholar 

  2. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008). arXiv:0711.0950 [hep-ph]

    ADS  Google Scholar 

  3. D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 80, 034028 (2009). arXiv:0907.5007 [hep-ph]

    ADS  Google Scholar 

  4. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, S. Krieg, A. Schafer, K.K. Szabo, JHEP 02, 044 (2012a). arXiv:1111.4956 [hep-lat]

    ADS  Google Scholar 

  5. I.A. Shovkovy, Lect. Notes Phys. 871, 13 (2013). arXiv:1207.5081 [hep-ph]

    ADS  Google Scholar 

  6. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Phys. Rev. Lett.73, 3499 (1994) (Erratum: Phys. Rev. Lett. 76, 1005 (1996)). arXiv:hep-ph/9405262 [hep-ph]

  7. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B 462, 249 (1996). arXiv:hep-ph/9509320 [hep-ph]

    ADS  Google Scholar 

  8. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B 563, 361 (1999). arXiv:hep-ph/9908320 [hep-ph]

    ADS  Google Scholar 

  9. F. Preis, A. Rebhan, A. Schmitt, JHEP 03, 033 (2011). arXiv:1012.4785 [hep-th]

    ADS  Google Scholar 

  10. F. Preis, A. Rebhan, A. Schmitt, Lect. Notes Phys. 871, 51 (2013). arXiv:1208.0536 [hep-ph]

    ADS  Google Scholar 

  11. P. Elmfors, K. Enqvist, K. Kainulainen, Phys. Lett. B 440, 269 (1998). arXiv:hep-ph/9806403 [hep-ph]

    ADS  Google Scholar 

  12. V. Skalozub, M. Bordag, Int. J. Mod. Phys. A 15, 349 (2000). arXiv:hep-ph/9904333 [hep-ph]

    ADS  Google Scholar 

  13. N. Sadooghi, K.S. Anaraki, Phys. Rev. D 78, 125019 (2008). arXiv:0805.0078 [hep-ph]

    ADS  Google Scholar 

  14. J. Navarro, A. Sanchez, M.E. Tejeda-Yeomans, A. Ayala, G. Piccinelli, Phys. Rev. D 82, 123007 (2010). arXiv:1007.4208 [hep-ph]

    ADS  Google Scholar 

  15. S. Fayazbakhsh, N. Sadooghi, Phys. Rev. D 82, 045010 (2010). arXiv:1005.5022 [hep-ph]

    ADS  Google Scholar 

  16. S. Fayazbakhsh, N. Sadooghi, Phys. Rev. D 83, 025026 (2011). arXiv:1009.6125 [hep-ph]

    ADS  Google Scholar 

  17. V. Skokov, Phys. Rev. D 85, 034026 (2012). arXiv:1112.5137 [hep-ph]

    ADS  Google Scholar 

  18. K. Fukushima, J.M. Pawlowski, Phys. Rev. D 86, 076013 (2012). arXiv:1203.4330 [hep-ph]

    ADS  Google Scholar 

  19. M.N. Chernodub, Phys. Rev. Lett. 106, 142003 (2011). arXiv:1101.0117 [hep-ph]

    ADS  Google Scholar 

  20. M.N. Chernodub, J. Van Doorsselaere, H. Verschelde, Phys. Rev. D 85, 045002 (2012). arXiv:1111.4401 [hep-ph]

    ADS  Google Scholar 

  21. V. Skokov, AYu. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009). arXiv:0907.1396 [nucl-th]

    ADS  Google Scholar 

  22. K. Tuchin, Phys. Rev. C 88, 024911 (2013)

    ADS  Google Scholar 

  23. K. Tuchin, Phys. Rev. C 93, 014905 (2016)

    ADS  Google Scholar 

  24. U. Gursoy, D. Kharzeev, K. Rajagopal, Phys. Rev. C 89, 054905 (2014). arXiv:1401.3805 [hep-ph]

    ADS  Google Scholar 

  25. T. Vachaspati, Phys. Lett. B 265, 258 (1991)

    ADS  Google Scholar 

  26. L. Campanelli, Phys. Rev. Lett. 111, 061301 (2013). arXiv:1304.6534 [astro-ph.CO]

    ADS  Google Scholar 

  27. R.C. Duncan, C. Thompson, Astrophys. J. 392, L9 (1992)

    ADS  Google Scholar 

  28. C. Thompson, R.C. Duncan, Astrophys. J. 408, 194 (1993)

    ADS  Google Scholar 

  29. D. Lai, S.L. Shapiro, Astrophys. J. 383, 745 (1991)

    ADS  Google Scholar 

  30. S. Bose, K. Chakravarti, L. Rezzolla, B.S. Sathyaprakash, K. Takami, Phys. Rev. Lett. 120, 031102 (2018)

    ADS  Google Scholar 

  31. A. Bazavov, H.-T. Ding, P. Hegde, O. Kaczmarek, F. Karsch, E. Laermann, Y. Maezawa, S. Mukherjee, H. Ohno, P. Petreczky, H. Sandmeyer, P. Steinbrecher, C. Schmidt, S. Sharma, W. Soeldner, M. Wagner, Phys. Rev. D 95, 054504 (2017)

    ADS  Google Scholar 

  32. J.N. Guenther, R.  Bellwied, S.  Borsanyi, Z.  Fodor, S.D. Katz, A.  Pasztor, C.  Ratti, K.K. Szabó, Proceedings, 26th International Conference on Ultra-relativistic Nucleus–Nucleus Collisions (Quark Matter 2017): Chicago, Illinois, USA, February 5-11, 2017. Nucl. Phys. A 967, 720 (2017). arXiv:1607.02493 [hep-lat]

  33. A.  Bazavov, T.  Bhattacharya, M.  Cheng, C.  DeTar, H.-T. Ding, S.  Gottlieb, R.  Gupta, P.  Hegde, U.M. Heller, F.  Karsch, E.  Laermann, L.  Levkova, S.  Mukherjee, P.  Petreczky, C.  Schmidt, R.A. Soltz, W.  Soeldner, R.  Sugar, D.  Toussaint, W.  Unger, P.  Vranas (HotQCD Collaboration), Phys. Rev. D85, 054503 (2012)

  34. A.  Bazavov, T.  Bhattacharya, C.  DeTar, H.-T. Ding, S.  Gottlieb, R.  Gupta, P.  Hegde, U.M. Heller, F.  Karsch, E.  Laermann, L.  Levkova, S.  Mukherjee, P.  Petreczky, C.  Schmidt, C.  Schroeder, R.A. Soltz, W.  Soeldner, R.  Sugar, M.  Wagner, P.  Vranas (HotQCD Collaboration), Phys. Rev. D 90, 094503 (2014)

  35. B.B. Brandt, G.  Bali, G.  Endrödi, B.  Glässle, Proceedings, 33rd International Symposium on Lattice Field Theory. PoS LATTICE 2015, 265 (2016). arXiv:1510.03899 [hep-lat]

  36. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, A. Schafer, Phys. Rev. D 86, 071502 (2012b). arXiv:1206.4205 [hep-lat]

    ADS  Google Scholar 

  37. S.  Sharma, Proceedings, 36th International Symposium on Lattice Field Theory (Lattice 2018): East Lansing, MI, United States, July 22–28, 2018. PoS LATTICE 2018, 009 (2019). arXiv:1901.07190 [hep-lat]

  38. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 124, 246 (1961a). (141(1961))

    ADS  Google Scholar 

  39. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961b). (127(1961))

    ADS  Google Scholar 

  40. S.P. Klevansky, Rev. Mod. Phys. 64, 649 (1992)

    ADS  MathSciNet  Google Scholar 

  41. T. Hatsuda, T. Kunihiro, Phys. Rep. 247, 221 (1994). arXiv:hep-ph/9401310 [hep-ph]

    ADS  Google Scholar 

  42. U. Vogl, W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991)

    ADS  Google Scholar 

  43. M. Buballa, Phys. Rep. 407, 205 (2005). arXiv:hep-ph/0402234 [hep-ph]

    ADS  Google Scholar 

  44. L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rep. 127, 1 (1985)

    ADS  Google Scholar 

  45. M. Cheng, N.H. Christ, S. Datta, J. van der Heide, C. Jung, F. Karsch, O. Kaczmarek, E. Laermann, R.D. Mawhinney, C. Miao, P. Petreczky, K. Petrov, C. Schmidt, W. Soeldner, T. Umeda, Phys. Rev. D 77, 014511 (2008)

    ADS  Google Scholar 

  46. L.D. McLerran, B. Svetitsky, Phys. Rev. D 24, 450 (1981)

    ADS  Google Scholar 

  47. C. Ratti, M.A. Thaler, W. Weise, Phys. Rev. D 73, 014019 (2006)

    ADS  Google Scholar 

  48. C.  Ratti, S.  Roessner, M.A. Thaler, W.  Weise, Proceedings, Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus–Nucleus Collisions (Hot Quarks 2006): Villasimius, Italy, May 15-20, 2006. Eur. Phys. J. C 49, 213 (2007). arXiv:hep-ph/0609218 [hep-ph]

  49. S. Rößner, C. Ratti, W. Weise, Phys. Rev. D 75, 034007 (2007)

    ADS  Google Scholar 

  50. C. Sasaki, B. Friman, K. Redlich, Phys. Rev. D 75, 074013 (2007)

    ADS  Google Scholar 

  51. J.O. Andersen, W.R. Naylor, A. Tranberg, Rev. Mod. Phys. 88, 025001 (2016). arXiv:1411.7176 [hep-ph]

    ADS  Google Scholar 

  52. K. Fukushima, Phys. Lett. B 591, 277 (2004)

    ADS  Google Scholar 

  53. K. Fukushima, Phys. Rev. D 77, 114028 (2008)

    ADS  Google Scholar 

  54. K. Fukushima, C. Sasaki, Progr. Part. Nucl. Phys. 72, 99 (2013)

    ADS  Google Scholar 

  55. S.K. Ghosh, T.K. Mukherjee, M.G. Mustafa, R. Ray, Phys. Rev. D 73, 114007 (2006)

    ADS  Google Scholar 

  56. A. Bhattacharyya, P. Deb, A. Lahiri, R. Ray, Phys. Rev. D 82, 114028 (2010)

    ADS  Google Scholar 

  57. K. Fukushima, M. Ruggieri, R. Gatto, Phys. Rev. D 81, 114031 (2010)

    ADS  Google Scholar 

  58. R. Gatto, M. Ruggieri, Phys. Rev. D 82, 054027 (2010)

    ADS  Google Scholar 

  59. R. Gatto, M. Ruggieri, Phys. Rev. D 83, 034016 (2011)

    ADS  Google Scholar 

  60. M.  Ferreira, P.  Costa, D.P. Menezes, C.M.C. Providência, N.N. Scoccola, Phys. Rev. D 89, 016002 (2014a)

  61. M. Ferreira, P. Costa, O. Lourenço, T. Frederico, C. Providência, Phys. Rev. D 89, 116011 (2014b)

    ADS  Google Scholar 

  62. S. Mao, Phys. Rev. D 97, 011501 (2018)

    ADS  Google Scholar 

  63. W.R. Tavares, R.L.S. Farias, S.S. Avancini, Phys. Rev. D 101, 016017 (2020)

    ADS  MathSciNet  Google Scholar 

  64. G.S. Bali, F. Bruckmann, G. Endrödi, S.D. Katz, A. Schäfer, JHEP 08, 177 (2014). arXiv:1406.0269 [hep-lat]

    ADS  Google Scholar 

  65. A.  Bandyopadhyay, R.L. Farias (2020). arXiv:2003.11054 [hep-ph]

  66. A. Ahmad, A. Raya, J. Phys. G 43, 065002 (2016). arXiv:1602.06448 [hep-ph]

    ADS  Google Scholar 

  67. S.S. Avancini, R.L.S. Farias, W.R. Tavares, Phys. Rev. D 99, 056009 (2019a). arXiv:1812.00945 [hep-ph]

    ADS  Google Scholar 

  68. R.L.S. Farias, V.S. Timoteo, S.S. Avancini, M.B. Pinto, G. Krein, Eur. Phys. J. A 53, 101 (2017). arXiv:1603.03847 [hep-ph]

    ADS  Google Scholar 

  69. S.S. Avancini, R.L.S. Farias, N.N. Scoccola, W.R. Tavares, (2019b). arXiv:1904.02730 [hep-ph]

  70. A. Ayala, M. Loewe, R. Zamora, Phys. Rev. D 91, 016002 (2015a). arXiv:1406.7408 [hep-ph]

    ADS  Google Scholar 

  71. A.  Ayala, C.  Dominguez, L.  Hernandez, M.  Loewe, R.  Zamora, Phys. Rev. D 92, 096011 (2015b) (Addendum: Phys. Rev. D 92, 119905 (2015)). arXiv:1509.03345 [hep-ph]

  72. M. Ruggieri, L. Oliva, P. Castorina, R. Gatto, V. Greco, Phys. Lett. B 734, 255 (2014). arXiv:1402.0737 [hep-ph]

    ADS  Google Scholar 

  73. A. Mukherjee, S. Ghosh, M. Mandal, S. Sarkar, P. Roy, Phys. Rev. D 98, 056024 (2018). arXiv:1809.07028 [hep-ph]

    ADS  Google Scholar 

  74. S. Fayazbakhsh, N. Sadooghi, Phys. Rev. D 90, 105030 (2014). arXiv:1408.5457 [hep-ph]

    ADS  Google Scholar 

  75. H. Hansen, W.M. Alberico, A. Beraudo, A. Molinari, M. Nardi, C. Ratti, Phys. Rev. D 75, 065004 (2007). arXiv:hep-ph/0609116 [hep-ph]

    ADS  Google Scholar 

  76. P. Costa, M.C. Ruivo, C.A. de Sousa, H. Hansen, W.M. Alberico, Phys. Rev. D 79, 116003 (2009)

    ADS  Google Scholar 

  77. P. Deb, A. Bhattacharyya, S. Datta, S.K. Ghosh, Phys. Rev. C 79, 055208 (2009)

    ADS  Google Scholar 

  78. E. Blanquier, Phys. Rev. C 89, 065204 (2014)

    ADS  Google Scholar 

  79. D. Blaschke, A. Dubinin, A. Radzhabov, A. Wergieluk, Phys. Rev. D 96, 094008 (2017)

    Google Scholar 

  80. P. Costa, R.C. Pereira, Symmetry 11, 507 (2019). arXiv:1904.05805 [hep-ph]

    Google Scholar 

  81. S. Fayazbakhsh, S. Sadeghian, N. Sadooghi, Phys. Rev. D 86, 085042 (2012). arXiv:1206.6051 [hep-ph]

    ADS  Google Scholar 

  82. S. Mao, Phys. Rev. D 99, 056005 (2019)

    ADS  Google Scholar 

  83. N. Chaudhuri, S. Ghosh, S. Sarkar, P. Roy, Phys. Rev. D 99, 116025 (2019). arXiv:1907.03990 [nucl-th]

    ADS  Google Scholar 

  84. S.  Ghosh, A.  Mukherjee, N.  Chaudhuri, P.  Roy, S.  Sarkar, (2020). arXiv:2003.02024 [hep-ph]

  85. R. Zhang, W.-J. Fu, Y.-X. Liu, Eur. Phys. J. C 76, 307 (2016). arXiv:1604.08888 [hep-ph]

    ADS  Google Scholar 

  86. D.E. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee, Lect. Notes Phys. 871, 1 (2013). arXiv:1211.6245 [hep-ph]

    ADS  Google Scholar 

  87. M. Morimoto, Y. Tsue, J. da Providencia, C. Providencia, M. Yamamura, Int. J. Mod. Phys. E 27, 1850028 (2018). arXiv:1801.03633 [hep-ph]

    ADS  Google Scholar 

  88. S.S. Avancini, R.L.S. Farias, N.N. Scoccola, W.R. Tavares, Phys. Rev. D 99, 116002 (2019c)

    ADS  MathSciNet  Google Scholar 

  89. S. Chakrabarty, Phys. Rev. D 54, 1306 (1996). arXiv:hep-ph/9603406 [hep-ph]

    ADS  Google Scholar 

  90. D.P. Menezes, M.B. Pinto, S.S. Avancini, A.P. Martinez, C. Providencia, Phys. Rev. C 79, 035807 (2009). arXiv:0811.3361 [nucl-th]

    ADS  Google Scholar 

  91. L. McLerran, K. Redlich, C. Sasaki, Nucl. Phys. A 824, 86 (2009)

    ADS  Google Scholar 

  92. L. McLerran, R.D. Pisarski, Nucl. Phys. A 796, 83 (2007). arXiv:0706.2191 [hep-ph]

    ADS  Google Scholar 

  93. H. Abuki, R. Anglani, R. Gatto, G. Nardulli, M. Ruggieri, Phys. Rev. D 78, 034034 (2008). arXiv:0805.1509 [hep-ph]

    ADS  Google Scholar 

  94. J. Carlomagno, M.I. Villafañe, Phys. Rev. D 100, 076011 (2019). arXiv:1906.04257 [hep-ph]

    ADS  Google Scholar 

  95. S.K. Ghosh, T.K. Mukherjee, M.G. Mustafa, R. Ray, Phys. Rev. D 77, 094024 (2008). arXiv:0710.2790 [hep-ph]

    ADS  Google Scholar 

  96. Y. Aoki, Z. Fodor, S. Katz, K. Szabó, Phys. Lett. B 643, 46 (2006)

    ADS  Google Scholar 

  97. M. Fukugita, A. Ukawa, Phys. Rev. Lett. 57, 503 (1986)

    ADS  Google Scholar 

  98. Y. Sakai, T. Sasaki, H. Kouno, M. Yahiro, Phys. Rev. D 82, 076003 (2010)

    ADS  Google Scholar 

  99. G.  Ripka, Quarks bound by chiral fields: the quark-structure of the vacuum and of light mesons and baryons (1997)

  100. D.G. Dumm, M.I. Villafañe, N. Scoccola, Phys. Rev. D 97, 034025 (2018). arXiv:1710.08950 [hep-ph]

    ADS  Google Scholar 

  101. S. Noguera, N. Scoccola, Phys. Rev. D 78, 114002 (2008). arXiv:0806.0818 [hep-ph]

    ADS  Google Scholar 

  102. G. Contrera, D. Dumm, N.N. Scoccola, Phys. Rev. D 81, 054005 (2010). arXiv:0911.3848 [hep-ph]

    ADS  Google Scholar 

  103. P. Costa, H. Hansen, M.C. Ruivo, C.A. de Sousa, Phys. Rev. D 81, 016007 (2010)

    ADS  Google Scholar 

  104. C.M. Hung, E.V. Shuryak, Phys. Rev. Lett. 75, 4003 (1995)

    ADS  Google Scholar 

  105. L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 1, Course of Theoretical Physics, vol.  5 (Butterworth-Heinemann, Oxford, 1980)

    Google Scholar 

  106. D. Ebert, A.S. Vshivtsev, (1998). arXiv:hep-ph/9806421 [hep-ph]

  107. T.  Inagaki, D.  Kimura, T.  Murata, Finite density QCD. Proceedings, International Workshop, Nara, Japan, July 10-12, 2003. Prog. Theor. Phys. Suppl. 153, 321 (2004). arXiv:hep-ph/0404219 [hep-ph]

  108. J.L. Noronha, I.A. Shovkovy, Phys. Rev. D 76, 105030 (2007) (Erratum: Phys. Rev. D 86, 049901(2012)). arXiv:0708.0307 [hep-ph]

  109. K. Fukushima, H.J. Warringa, Phys. Rev. Lett. 100, 032007 (2008). arXiv:0707.3785 [hep-ph]

    ADS  Google Scholar 

  110. V.D. Orlovsky, YuA Simonov, Int. J. Mod. Phys. A 30, 1550060 (2015). arXiv:1406.1056 [hep-ph]

    ADS  Google Scholar 

  111. D.G. Dumm, M.I. Villafañe, N.  Scoccola, (2020). arXiv:2004.10052 [hep-ph]

  112. S. Mao, Y. Wang, Phys. Rev. D 96, 034004 (2017). arXiv:1702.04868 [hep-ph]

    ADS  Google Scholar 

  113. https://nica.jinr.ru/physics.php

  114. E.J. Ferrer, V. de la Incera, Nucl. Phys. B 824, 217 (2010). arXiv:0905.1733 [hep-ph]

    ADS  Google Scholar 

  115. J.S. Schwinger, Phys. Rev. 73, 416 (1948)

    ADS  Google Scholar 

  116. S. Mao, D.H. Rischke, Phys. Lett. B 792, 149 (2019). arXiv:1812.06684 [hep-th]

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors were funded by the Department of Atomic Energy (DAE), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snigdha Ghosh.

Additional information

Communicated by Carsten Urbach.

Appendices

Appendix A: double derivatives of \( \Omega \) with respect to \( M, \Phi \) and \( {\overline{\Phi }} \)

From Eq. (10) we get

$$\begin{aligned} \frac{\partial {\Omega }}{\partial {M}}= & {} \frac{M- m}{G} - 3 \sum _{n,f,s} \frac{\left| q_f B\right| }{2\pi ^2 } \int _{0}^{\infty }dp_z \frac{M}{\omega _{nfs} }\nonumber \\&\quad \left( 1 - \frac{ s\kappa _f q_f B}{M_{nfs}} \right) \Big [1- f^+ \left( \Phi , {\bar{\Phi }}, T \right) \nonumber \\&\quad - f^- \left( {\Phi , {\bar{\Phi }}, T }\right) \Big ]. \end{aligned}$$
(A1)

Following relations can be used to arrive at the above result

$$\begin{aligned}&\frac{\partial {\omega _{nfs}}}{\partial {M}} = \frac{M}{\omega _{nfs} } \left( 1 - \frac{s\kappa _f q_f B}{M_{nfs}} \right) , \end{aligned}$$
(A2)
$$\begin{aligned}&\frac{\partial {e^{-{n}\beta \left( \omega _{nfs} {\mp }\mu _q \right) } }}{\partial {M}} = -\frac{n\beta M}{\omega _{nfs}} \left( 1 - \frac{s\kappa _f q_f B}{M_{nfs}} \right) \nonumber \\&\quad \times e^{-{n}\beta \left( \omega _{nfs} {\mp }\mu _q \right) } , \end{aligned}$$
(A3)
$$\begin{aligned}&\frac{\partial {\ln g^{(+)}}}{\partial {M}} = -\frac{3 \beta M}{\omega _{nfs}} \left( 1 - \frac{s\kappa _f q_f B}{M_{nfs}} \right) f^+ \left( \Phi , {\bar{\Phi }}, T \right) ,\end{aligned}$$
(A4)
$$\begin{aligned}&\frac{\partial {\ln g^{(-)}}}{\partial {M}} = -\frac{3 \beta M}{\omega _{nfs}} \left( 1 - \frac{s\kappa _f q_f B}{M_{nfs}} \right) f^- \left( \Phi , {\bar{\Phi }}, T \right) . \end{aligned}$$
(A5)

Note that in Eq. (A1) the medium independent term has to be regularized by introducing a field dependent cutoff (see [83] for details):

$$\begin{aligned} \Lambda _z = \sqrt{\Lambda ^2 - (2n + 1-s ) \left| q_f B\right| + 2M_{nfs} s\kappa _f q_f B - (\kappa _f q_f B)^2 }. \end{aligned}$$
(A6)

So the regularized version of Eq. (A1) is

$$\begin{aligned} \frac{\partial {\Omega }}{\partial {M}}= & {} \frac{M- m}{G}- 3 \sum _{n,f,s} \frac{\left| q_f B\right| }{2\pi ^2 } \int _0^{\Lambda _z} dp_z \frac{M}{\omega _{nfs} }\nonumber \\&\times \left( 1 - \frac{s\kappa _f q_f B}{M_{nfs}} \right) + 3 \sum _{n,f,s} \frac{\left| q_f B\right| }{2\pi ^2 } \int _{0}^{\infty }dp_z \nonumber \\&\times \frac{M}{\omega _{nfs} } \left( 1 - \frac{ s\kappa _f q_f B}{M_{nfs}} \right) \nonumber \\&\times \left[ f^+ \left( \Phi , {\bar{\Phi }}, T \right) + f^- \left( \Phi , {\bar{\Phi }}, T \right) \right] . \end{aligned}$$
(A7)

Now to evaluate the second derivative with respect to M, the following relations will be useful:

$$\begin{aligned}&\frac{M}{\omega _{nfs} }\left( 1 - \frac{s\kappa _f q_f B}{M_{nfs}} \right) \bigg |_{p_z = \Lambda _z} = \frac{M^ 2}{\Lambda _z\sqrt{\Lambda ^2 + M^2 }} \frac{s\kappa _f q_f B}{M_{nfs}}\nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \times \left( 1 - \frac{s\kappa _f q_f B}{M_{nfs}} \right) \end{aligned}$$
(A8)
$$\begin{aligned}&\frac{\partial {\Lambda _z }}{\partial {M}} = \frac{s\kappa _f q_f B}{\Lambda _z} \frac{M}{M_{nfs}} , \end{aligned}$$
(A9)
$$\begin{aligned}&\frac{\partial }{\partial M} {\left( 1 - \frac{s\kappa _f q_f B}{M_{nfs}} \right) } = \frac{1}{\omega _{nfs}}\left( 1 - \frac{s\kappa _f q_f B}{M_{nfs}} \right) \nonumber \\&\quad - \frac{M^2}{\omega _{nfs}^3} \left( 1 - \frac{s\kappa _f q_f B}{M_{nfs}} \right) ^2 + \frac{M^2 s\kappa _f q_f B}{\omega _{nfs} M_{nfs}^3}. \end{aligned}$$
(A10)

Thus we can finally write

$$\begin{aligned} \frac{\partial ^2 {\Omega }}{\partial {M }^2}= & {} \frac{1}{G} - 3 \sum _{n,f,s} \frac{\left| q_f B\right| }{2\pi ^2 } \int _{0}^{\Lambda _z } dp_z \nonumber \\&\times \left[ \frac{1}{\omega _{nfs}}\left( 1 - \frac{s\kappa _f q_f B}{M_{nfs}} \right) - \frac{M^2}{\omega _{nfs}^3} \left( 1 - \frac{s\kappa _f q_f B}{M_{nfs}} \right) ^2 \right. \nonumber \\&\left. + \frac{M^2 s\kappa _f q_f B}{\omega _{nfs} M_{nfs}^3}\right] \left[ 1 - f^+ \left( \Phi , {\bar{\Phi }}, T \right) - f^- \left( \Phi , {\bar{\Phi }}, T \right) \right] \nonumber \\&- 3 \sum _{n,f,s} \frac{\left| q_f B\right| }{2\pi ^2 } \frac{M^ 2}{\Lambda _z\sqrt{\Lambda ^2 + M^2 }} \frac{s\kappa _f q_f B}{M_{nfs}} \left( 1 - \frac{s\kappa _f q_f B}{M_{nfs}} \right) \nonumber \\&- \frac{3}{T}\sum _{n,f,s} \frac{\left| q_f B\right| }{2\pi ^2} \int _{0}^{\infty }dp_z \frac{M^2}{\omega _{nfs}^2}\left( 1 - \frac{s\kappa _f q_f B}{M_{nfs}} \right) ^2 \nonumber \\&\times \left[ \frac{e^{-{ }\beta \left( \omega _{nfs} {- }\mu _q \right) } }{g^{(+)}}\left\{ \left( \Phi \right. \right. {+} 4 {\bar{\Phi }}e^{-{ }\beta \left( \omega _{nfs} {- }\mu _q \right) } {+} 3 e^{-{2}\beta \left( \omega _{nfs} {-}\mu _q \right) } \right) \nonumber \\&-3f^+\left( \Phi , {\bar{\Phi }}, T \right) \left( \Phi + 2{\bar{\Phi }}e^{-{ }\beta \left( \omega _{nfs} {-}\mu _q \right) } \right. \nonumber \\&\left. \left. + e^{-{ 2}\beta \left( \omega _{nfs} {-}\mu _q \right) } \right) \right\} \nonumber \\&\left. + \left\{ \Phi \leftrightarrow {\bar{\Phi }}; \mu _q \rightarrow -\mu _q \right\} \right] ,\nonumber \\ \end{aligned}$$
(A11)
$$\begin{aligned} \frac{\partial ^2 {\Omega }}{\partial {\Phi }\partial {M}}= & {} 3 \sum _{n,f,s} \frac{\left| q_f B\right| }{2\pi ^2} \int _{0}^{\infty }dp_z \frac{M}{\omega _{nfs} } \left( 1 - \frac{s\kappa _f q_f B}{M_{nfs}} \right) \nonumber \\&\left[ \frac{e^{-{ }\beta \left( \omega _{nfs} {-}\mu _q \right) } }{g^{(+)}} -\frac{3f^+\left( \Phi , {\bar{\Phi }}, T \right) }{g^{(+)}} e^{-{ }\beta \left( \omega _{nfs} {-}\mu _q \right) } \right. \nonumber \\&\left. + \frac{2e^{-{ 2}\beta \left( \omega _{nfs} {+}\mu _q \right) } }{g^{(-)}} -\frac{3f^-\left( \Phi , {\bar{\Phi }}, T \right) }{g^{(-)}} e^{-{2 }\beta \left( \omega _{nfs} {+}\mu _q \right) } \right] , \nonumber \\\end{aligned}$$
(A12)
$$\begin{aligned} \frac{\partial ^2 {\Omega }}{\partial {{\bar{\Phi }}}\partial {M}}= & {} \frac{\partial ^2 {\Omega }}{\partial {\Phi }\partial {M}} \left\{ \Phi \leftrightarrow {\bar{\Phi }}; \mu _q \rightarrow -\mu _q \right\} , \end{aligned}$$
(A13)
$$\begin{aligned} \frac{\partial ^2 {\Omega }}{\partial {\Phi }^2}= & {} \left( -b_3 \Phi + \frac{b_4}{2} {\bar{\Phi }}^2\right) T^4 + 9 T \sum _{n,f,s} \frac{\left| q_f B\right| }{2\pi ^2} \int _{0}^{\infty }dp_z \nonumber \\&\times \left[ \frac{e^{-{2}\beta \left( \omega _{nfs} {-}\mu _q \right) } }{{g^{(+)}}^2 } + \frac{e^{-{4}\beta \left( \omega _{nfs} {+}\mu _q \right) } }{{g^{(-)}}^2 } \right] ,\end{aligned}$$
(A14)
$$\begin{aligned} \frac{\partial ^2 {\Omega }}{\partial {{\bar{\Phi }}}^2}= & {} \frac{\partial ^2 {\Omega }}{\partial {\Phi }^2} \left\{ \Phi \leftrightarrow {\bar{\Phi }}; \mu _q \rightarrow -\mu _q \right\} , \end{aligned}$$
(A15)
$$\begin{aligned} \frac{\partial ^2 {\Omega }}{\partial {\Phi }\partial {{\bar{\Phi }}}}= & {} \left( \frac{- b_2(T)}{2} + b_4 {\bar{\Phi }}\Phi \right) T^4 \nonumber \\&+9 T \sum _{n,f,s} \frac{\left| q_f B\right| }{2\pi ^2} \int _{0}^{\infty }dp_z \nonumber \\&\times \left[ \frac{e^{-{3}\beta \left( \omega _{nfs} {-}\mu _q \right) } }{{g^{(+)}}^2 } + \frac{e^{-{3}\beta \left( \omega _{nfs} {+}\mu _q \right) } }{{g^{(-)}}^2 } \right] . \end{aligned}$$
(A16)

Appendix B: T-derivatives of \( M, \Phi , {\overline{\Phi }} \)

We have

$$\begin{aligned}&\dfrac{\partial }{\partial T} \left[ e^{-{n}\beta \left( \omega _{nfs} {\mp }\mu _q \right) } \right] = n e^{-{n}\beta \left( \omega _{nfs} {\mp }\mu _q \right) } \nonumber \\&\quad \times \left[ \frac{\omega _{nfs} \mp \mu _q }{T^2} - \frac{M}{\omega _{nfs} } \left( 1 - \frac{s\kappa _f q_f B}{M_{nfs}} \right) \left( \frac{\partial {M}}{\partial {T}} \right) \right] , \end{aligned}$$
(B1)
$$\begin{aligned}&\frac{\partial {f^+\left( \Phi , {\bar{\Phi }}, T \right) }}{\partial {T}} =\left( \frac{\partial {f^+}}{\partial {M}} \right) \left( \frac{\partial {M}}{\partial {T}} \right) \nonumber \\&\quad + \left( \frac{\partial {f^+}}{\partial {\Phi }} \right) \left( \frac{\partial {\Phi }}{\partial {T}} \right) +\left( \frac{\partial {f^+}}{\partial {{\bar{\Phi }}}} \right) \left( \frac{\partial {{\bar{\Phi }}}}{\partial {T}} \right) + A^+_{M,T} \end{aligned}$$
(B2)

where

$$\begin{aligned}&\frac{\partial {f^+}}{\partial {M }} = - \frac{M}{\omega _{nfs}} \left( 1 - \frac{s\kappa _f q_f B}{M_{nfs}} \right) \frac{e^{-{ }\beta \left( \omega _{nfs} {-}\mu _q \right) } }{g^{(+)}}\nonumber \\&\quad \qquad \times \left[ \left( \Phi + 4 {\bar{\Phi }}e^{-{ }\beta \left( \omega _{nfs} {- }\mu _q \right) } + 3 e^{-{2}\beta \left( \omega _{nfs} {-}\mu _q \right) } \right) \nonumber \right. \\&\quad \qquad -3f^+\left( \Phi , {\bar{\Phi }}, T \right) \left( \Phi + 2{\bar{\Phi }}e^{-{ }\beta \left( \omega _{nfs} {-}\mu _q \right) } \right. \nonumber \\&\left. \left. \qquad \,\,\, + e^{-{ 2}\beta \left( \omega _{nfs} {-}\mu _q \right) } \right) \right] , \end{aligned}$$
(B3)
$$\begin{aligned}&\frac{\partial {f^+}}{\partial {\Phi }} = \frac{e^{-{ }\beta \left( \omega _{nfs} {-}\mu _q \right) } }{g^{(+)}} -\frac{3f^+\left( \Phi , {\bar{\Phi }}, T \right) }{g^{(+)}} e^{-{ }\beta \left( \omega _{nfs} {-}\mu _q \right) } , \nonumber \\ \end{aligned}$$
(B4)
$$\begin{aligned}&\frac{\partial {f^+}}{\partial {{\bar{\Phi }}}} = \frac{2e^{-{ 2}\beta \left( \omega _{nfs} {-}\mu _q \right) } }{g^{(+)}} -\frac{3f^+\left( \Phi , {\bar{\Phi }}, T \right) }{g^{(+)}} e^{-{2 }\beta \left( \omega _{nfs} {-}\mu _q \right) } ,\nonumber \\ \end{aligned}$$
(B5)
$$\begin{aligned}&A^+_{M,T} = \frac{e^{-{}\beta \left( \omega _{nfs} {-}\mu _q \right) } }{{g^{(+)}}^2} \frac{\left( \omega _{nfs} -\mu _q \right) }{T^2}\nonumber \\&\quad \qquad \times \left\{ \Phi + 4{\bar{\Phi }}e^{-{ }\beta \left( \omega _{nfs} {-}\mu _q \right) } + 3\left( 1 + {\bar{\Phi }}\Phi \right) e^{-{2}\beta \left( \omega _{nfs} {-}\mu _q \right) } \nonumber \right. \\&\quad \qquad \left. +4\Phi e^{-{3}\beta \left( \omega _{nfs} {-}\mu _q \right) } + {\bar{\Phi }}e^{-{4}\beta \left( \omega _{nfs} {-}\mu _q \right) } \right\} , \end{aligned}$$
(B6)
$$\begin{aligned}&\frac{\partial {f^-\left( \Phi , {\bar{\Phi }}, T \right) }}{\partial {T}} \nonumber \\&\qquad \qquad =\frac{\partial {f^+\left( \Phi , {\bar{\Phi }}, T \right) }}{\partial {T}} \left\{ \Phi \leftrightarrow {\bar{\Phi }}; \mu _q \rightarrow -\mu _q \right\} . \end{aligned}$$
(B7)

Now using the above relations and results given in Appendix 1, T-derivatives of the gap equations of \( M, \Phi \) and \( {\bar{\Phi }}\) can be calculated starting from Eqs. (15), (16) and (17). The expression can be written in a matrix form in the following way:

$$\begin{aligned} \begin{bmatrix} C_{MM} &{} C_{M\Phi } &{} C_{M{\bar{\Phi }}} \\ C_{\Phi M} &{} C_{\Phi \Phi } &{} C_{\Phi {\bar{\Phi }}} \\ C_{{\bar{\Phi }}M} &{} C_{{\bar{\Phi }}\Phi } &{} C_{{\bar{\Phi }}{\bar{\Phi }}} \end{bmatrix} \begin{bmatrix} \frac{1}{\Lambda } \frac{\partial {M}}{\partial {T}} \\ \frac{\partial {\Phi }}{\partial {T}} \\ \frac{\partial {{\bar{\Phi }}}}{\partial {T}} \end{bmatrix} = \begin{bmatrix} \frac{T}{\Lambda ^2} A_{M,T} \\ \frac{T^2}{\Lambda ^3} A_{\Phi ,T} \\ \frac{T^2}{\Lambda ^3} A_{{\bar{\Phi }},T} \end{bmatrix} \end{aligned}$$
(B8)

where

$$\begin{aligned} A_{M,T}= & {} -\frac{3}{T^4} \sum _{n,f,s} \frac{\left| q_f B\right| }{2\pi ^2} \int _{0}^{\infty }dp_z \frac{M}{\omega _{nfs} }\nonumber \\&\times \left( 1 - \frac{s\kappa _f q_f B}{M_{nfs}} \right) \left[ \frac{e^{-{}\beta \left( \omega _{nfs} {-}\mu _q \right) } }{{g^{(+)}}^2} \left( \omega _{nfs} -\mu _q \right) \right. \nonumber \\&\times \left\{ \Phi + 4{\bar{\Phi }}e^{-{ }\beta \left( \omega _{nfs} {-}\mu _q \right) } + 3\left( 1 + {\bar{\Phi }}\Phi \right) e^{-{2}\beta \left( \omega _{nfs} {-}\mu _q \right) } \nonumber \right. \\&\left. +4\Phi e^{-{3}\beta \left( \omega _{nfs} {-}\mu _q \right) } + {\bar{\Phi }}e^{-{4}\beta \left( \omega _{nfs} {-}\mu _q \right) } \right\} \nonumber \\&\left. + \left\{ \Phi \leftrightarrow {\bar{\Phi }}; \mu _q \rightarrow -\mu _q \right\} \right] , \end{aligned}$$
(B9)
$$\begin{aligned} A_{\Phi ,T}= & {} - \frac{T}{2}\frac{\partial {b_2(T)}}{\partial {T}} {\bar{\Phi }}- \frac{9}{T^3}\sum _{n,f,s} \frac{\left| q_f B\right| }{2\pi ^2} \int _{0}^{\infty }dp_z \nonumber \\&\times \left( \frac{e^{-{}\beta \left( \omega _{nfs} {-}\mu _q \right) } }{g^{(+)}} + \frac{e^{-{2}\beta \left( \omega _{nfs} {+}\mu _q \right) } }{g^{(-)}} \right) \nonumber \\&+ \frac{3}{T^4} \sum _{n,f,s} \frac{\left| q_f B\right| }{2\pi ^2} \int _{0}^{\infty }dp_z \left[ \frac{e^{-{}\beta \left( \omega _{nfs} {-}\mu _q \right) } }{{g^{(+)}}^2} \left( \omega _{nfs} -\mu _q \right) \right. \nonumber \\&\times \left\{ 1 - 3 {\bar{\Phi }}e^{-{2}\beta \left( \omega _{nfs} {-}\mu _q \right) } - 2 e^{-{3}\beta \left( \omega _{nfs} {-}\mu _q \right) } \right\} \nonumber \\&+ \frac{e^{-{2}\beta \left( \omega _{nfs} {+}\mu _q \right) } }{{g^{(-)}}^2} \left( \omega _{nfs} +\mu _q \right) \nonumber \\&\left. \times \left\{ 2+ 3 {\bar{\Phi }}e^{-{}\beta \left( \omega _{nfs} {+}\mu _q \right) } - e^{-{3}\beta \left( \omega _{nfs} {+}\mu _q \right) } \right\} \right] \end{aligned}$$
(B10)
$$\begin{aligned}&\mathrm{and }\nonumber \\ A_{{\bar{\Phi }},T}= & {} A_{\Phi ,T} \left\{ \Phi \leftrightarrow {\bar{\Phi }}; \mu _q \rightarrow -\mu _q \right\} .\end{aligned}$$
(B11)

During this calculation we have put a combination of T and \( \Lambda \) with several quantities to make sure we get matrix with dimensionless co-efficients as introduced in Sect. 2.2.

Appendix C: \(\mu _q \)-derivatives of \( M,\Phi ,{\overline{\Phi }} \)

Similar matrix form can also be written for \( \mu _q \)-derivatives of the gap equations as shown below

$$\begin{aligned} \begin{bmatrix} C_{MM} &{} C_{M\Phi } &{} C_{M{\bar{\Phi }}} \\ C_{\Phi M} &{} C_{\Phi \Phi } &{} C_{\Phi {\bar{\Phi }}} \\ C_{{\bar{\Phi }}M} &{} C_{{\bar{\Phi }}\Phi } &{} C_{{\bar{\Phi }}{\bar{\Phi }}} \end{bmatrix} \begin{bmatrix} \frac{1}{\Lambda } \frac{\partial {M}}{\partial {\mu _q}} \\ \frac{\partial {\Phi }}{\partial {\mu _q}} \\ \frac{\partial {{\bar{\Phi }}}}{\partial {\mu _q}} \end{bmatrix} = \begin{bmatrix} \frac{T}{\Lambda ^2} A_{M,\mu _q} \\ \frac{T^2}{\Lambda ^3} A_{\Phi ,\mu _q} \\ \frac{T^2}{\Lambda ^3} A_{{\bar{\Phi }},\mu _q} \end{bmatrix} \end{aligned}$$
(C1)

where

$$\begin{aligned} A_{M,\mu _q}= & {} -\frac{3}{T^3} \sum _{n,f,s} \frac{\left| q_f B\right| }{2\pi ^2} \int _{0}^{\infty }dp_z \frac{M}{\omega _{nfs} }\nonumber \\&\times \left( 1 - \frac{s\kappa _f q_f B}{M_{nfs}} \right) \left[ \frac{e^{-{}\beta \left( \omega _{nfs} {-}\mu _q \right) } }{{g^{(+)}}^2} \left\{ \Phi + 4{\bar{\Phi }}e^{-{ }\beta \left( \omega _{nfs} {-}\mu _q \right) } \right. \right. \nonumber \\&+ 3\left( 1 + {\bar{\Phi }}\Phi \right) e^{-{2}\beta \left( \omega _{nfs} {-}\mu _q \right) } \nonumber \\&\left. +4\Phi e^{-{3}\beta \left( \omega _{nfs} {-}\mu _q \right) } + {\bar{\Phi }}e^{-{4}\beta \left( \omega _{nfs} {-}\mu _q \right) } \right\} \nonumber \\&\left. - \left\{ \Phi \leftrightarrow {\bar{\Phi }}; \mu _q \rightarrow -\mu _q \right\} \right] , \end{aligned}$$
(C2)
$$\begin{aligned} A_{\Phi ,\mu _q}= & {} \frac{3}{T^3} \sum _{n,f,s} \frac{\left| q_f B\right| }{2\pi ^2} \int _{0}^{\infty }dp_z \left[ \frac{e^{-{}\beta \left( \omega _{nfs} {-}\mu _q \right) } }{{g^{(+)}}^2}\right. \nonumber \\&\times \left\{ 1 - 3 {\bar{\Phi }}e^{-{2}\beta \left( \omega _{nfs} {-}\mu _q \right) } - 2 e^{-{3}\beta \left( \omega _{nfs} {-}\mu _q \right) } \right\} \nonumber \\&+ \frac{e^{-{2}\beta \left( \omega _{nfs} {+}\mu _q \right) } }{{g^{(-)}}^2}\left\{ 2+ 3 {\bar{\Phi }}e^{-{}\beta \left( \omega _{nfs} {+}\mu _q \right) } \right. \nonumber \\&\left. \left. - e^{-{3}\beta \left( \omega _{nfs} {+}\mu _q \right) } \right\} \right] , \end{aligned}$$
(C3)
$$\begin{aligned}&A_{{\bar{\Phi }},\mu _q} A_{\Phi ,\mu _q } \left\{ \Phi \leftrightarrow {\bar{\Phi }}; \mu _q \rightarrow -\mu _q \right\} . \end{aligned}$$
(C4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhuri, N., Ghosh, S., Sarkar, S. et al. Effects of quark anomalous magnetic moment on the thermodynamical properties and mesonic excitations of magnetized hot and dense matter in PNJL model. Eur. Phys. J. A 56, 213 (2020). https://doi.org/10.1140/epja/s10050-020-00222-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00222-9

Navigation