Skip to main content
Log in

Microring Plasmonic Transducer Circuits for Up-Downstream Communications

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The microring circuit is designed to form the upstream and downstream quantum communications. There are one space and two-time functions applied to form the transmission. A circuit consists of 3 microring resonators, where there are three processes of each transmission. Firstly, the space function pulse (soliton) fed into the system via the main ring input port. The whispering gallery mode (WGM) is generated at the center ring with suitable parameters. The dipole oscillation is formed by the coupling between plasmonic wave and gold grating, which will change in the dipole oscillation frequency inducing the change in the plasmonic sensor. The flip-flop signals obtained from the bright and dark soliton via the throughput and drop ports can apply for the transmission clock signals. Secondly, the quantum codes formed by a time-energy function input into the system via a silicon ring, which induced the four-wave mixing induced by the coherent light in a GaAsInP ring, can be identified and the quantum bits(qubits) formed by the polarized signal orientation. The quantum information is multiplexed into the system. Thirdly, the carrier time function will input via the add port main ring. By using the resonant condition, the multiplexed signals of those processes will transmit via either WGM or throughput port for wireless or cable transmission, respectively. The downstream process is processed the same way as the upstream, where the multiplexer is placed by the de-multiplexer. By varying the input power, the manipulation result has shown the potential realistic application for quantum and telepathic communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Youplao P, Pornsuwancharoen N, Amiri IS, Jalil MA, Aziz MS, Ali J, Singh G, Yupapin P, Grattan KTV (2018) Microring stereon sensors model using Kerr-Vernier effect for bio-cel sensor and communication. Nano Commun Netw 17:30–35

    Article  Google Scholar 

  2. Koos C, Jacome L, Poulton C, Leuthold J, Freude W (2007) Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt Express 15:5976–5990

    Article  CAS  Google Scholar 

  3. Pornsuwancharoen N, Amiri IS, Suhailin FH, Aziz MS, Ali J, Singh G, Yupapin P (2017) Micro-current source generated by a WGM of light within a stacked silicon-graphene-Au waveguide. IEEE Photon Technol Lett 29(21):1768–1771

    Article  CAS  Google Scholar 

  4. Xin HM, Huang YQ, Chen HB, Huang H, Ren X, Zhou XG (2009) Design and fabrication of InP micro-ring resonant detectors. Optoelectron Lett 5:6–10

    Article  Google Scholar 

  5. Bogaerts W, de Heyn P, van Vaerenbergh T, de Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, van Thourhout D, Baets R (2012) Silicon micro-ring resonators. Laser Photon Rev 6(1):47–73

    Article  CAS  Google Scholar 

  6. Atabaki AH, Moazeni S, Pavanello F, Gevorgyan H, Notaros J, Alloatti L, Wade MT, Sun C, Kruger SA, Meng H, al Qubaisi K, Wang I, Zhang B, Khilo A, Baiocco CV, Popović MA, Stojanović VM, Ram RJ (2018) Integrating photonics with silicon nanoelectronics for next generation of system on a chip. Nature 556:349–354

    Article  CAS  Google Scholar 

  7. Dutt A, Luke K, Manipatruni S, Gaeta AL, Nussenzveig P, Lipson M (2015) On-chip optical squeezing. Phys Rev App 3:044005

    Article  Google Scholar 

  8. Ali J, Pornsuwancharoen N, Youplao P, Aziz MS, Amiri IS, Chaiwong K, Chiangga S, Singh G, Yupapin P (2018) Coherent light squeezing states within a modified microring system. Results Phys 9:211–214

    Article  Google Scholar 

  9. Youplao P, Sarapat N, Porsuwancharoen N, Chaiwong K, Jalil MA, Amiri IS, Ali J, Aziz MS, Chiangga S, Singh G, Yupapin P, Grattan KTV (2018) Plasmonic op-amp circuit model using inline successive microring pumping technique. Microsyst Technol 24(9):3689–3695

    Article  CAS  Google Scholar 

  10. Ali J, Youplao P, Pornsuwancharoen N, Jalil MA, Chiangga S, Amiri IS, Punthawanunt S, Aziz MS, Singh G, Yupapin P, Grattan KTV (2018) Nano-capacitor-like model using light trapping in plasmonic island embedded microring system. Results Phys 10:727–730

    Article  Google Scholar 

  11. Chaiwong K et al (2016) Four-wave mixing (FWM) effects within a micro-optical device. Int J Electron Electr Eng 4(3):1–4

    Google Scholar 

  12. Derkachova A, Kolwas K (2007) Size dependence of multipolar plasmon resonance frequencies and damping rates in simple metal spherical nanoparticles. Eur Phys J-Spec Top 144:93–99

    Article  Google Scholar 

  13. Soysouvanh S, Jalil MA, Amiri IS, Ali J, Singh G, Mitatha S, Yupapin P, Grattan KTV, Yoshida M (2018) Ultra-fast electro-optic switching control using a soliton pulse within a modified add-drop multiplexer. Microsyst Technol 24(9):3777–3782

    Article  CAS  Google Scholar 

  14. Sarapat N, Pornsuwancharoen N, Youplao P, Amiri IS, Jalil MA, Ali J, Singh G, Yupapin P, Grattan KTV (2019) LiFi up-downlink conversion node model generated by inline successive optical pumping. Microsyst Technol 25(3):945–950

    Article  CAS  Google Scholar 

  15. Punthawanunt S, Yupapin P (2018) Meditation on a daily basis makes wise without violence. J Yoga Phys 4:555631

    Google Scholar 

  16. Lee TK, Kim HS, Oh GY, Lee BH, Kim DG, Chung TK, McCloskey D, Donegan JF, Choi YW (2014) Systematic analysis of whispering-gallery modes in planar silicon nitride microdisks. Opt Commun 322:188–197

    Article  CAS  Google Scholar 

  17. Cai L, Pan J, Hu S (2020) Overview of the coupling methods used in whispering gallery mode resonator systems for sensing. Opt Lasers Eng 127:105968

    Article  Google Scholar 

  18. Agrawal GP (2011) Nonlinear fiber optics: its history and recent progress. J Opt Soc Am B 28(12):A1–A10

    Article  CAS  Google Scholar 

  19. Phatharaworamet T, Teeka C, Jomtarak R, Mitatha S, Yupapin PP (2010) Random binary code generation using dark-bright soliton conversion control within a panda ring resonator. IEEE Lightwave Technol 28(19):2804–2809

    Article  Google Scholar 

  20. Tunsiri S, Thammawongsa N, Threepak T, Mitatha S, Yupapin P (2019) Microring switching control using plasmonic ring resonator circuits for super-channel use. Plasmonics 14:1669–1677

    Article  Google Scholar 

  21. Wolpert DH, Kolchinsky A, Owen JA (2019) A space-time tradeoff for implementing a function with mater equation dynamics. Nat Commun 10:1727

    Article  Google Scholar 

  22. Yessenov M, Bhaduri B, Kondakci HE, Abouraddy AF (2019) Weaving the rainbow: space-time optical wave packets. Opt Photon News 30(5):34–41

    Article  Google Scholar 

  23. Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans Antennas Propag 51:302–307

    Google Scholar 

  24. Silverstone JW, Santagati R, Bonneau D, Strain MJ, Sorel M, O’Brien JL, Thompson MG (2015) Qubit entanglement between ring-resonator photon pair sources on a silicon chip. Nat Commun 6:7948

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the research facilities from the Ton Duc Thang University, Vietnam, and Rajamangala University of Technology Phra Nakhon, Bangkok 10300, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Youplao or P. Yupapin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunruangses, M., Youplao, P., Amiri, I.S. et al. Microring Plasmonic Transducer Circuits for Up-Downstream Communications. Plasmonics 16, 123–129 (2021). https://doi.org/10.1007/s11468-020-01247-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01247-y

Keywords

Navigation