Skip to main content
Log in

The low copy nuclear region, RPB2 as a novel DNA barcode region for species identification in the rattan genus Calamus (Arecaceae)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Taxonomic complexities, like environmental plasticity and homoplasy, make precise identification challenging in Calamus, the genus of spiny climbing palms of the subfamily Calamoideae (Arecaceae). In the present study, the species discriminatory power of twelve potential DNA barcode regions (rbcL, matK, psbA-trnH, rpoC, rpoB, psbK-psbI, atpF-atpH, psbZ-trnfM, ITS1, ITS2, PRK, and RPB2) were evaluated in 21 species of Calamus from the Western Ghats region of India, using distance, tree, and similarity based statistical methods. Except for the low copy nuclear region, RPB2, none of the tested plastid loci or nuclear loci ITS, either singly or in combinations, could discriminate all the species of Calamus due to low substitution rate of plastid regions and multiple copies of ITS respectively. The RPB2 locus showed highest species resolution with 96% accuracy in similarity based analysis, indicating its potential and efficiency as a barcode locus for the genus. The putative “Calamus gamblei complex” based on overlapping morphology was successfully resolved as six distinct, though closely related, species. The analysis also indicates that C. delessertianus is a morphological variant of C. dransfieldii. In spite of being a low copy nuclear gene region, RPB2 provided an efficient barcode to delineate Calamus species and has the potential to further extend its use as a prospective barcode to other Palm genera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

All the nucleotide sequence data generated in the study  was submitted to NCBI and the list of accession numbers are provided as supplementary table S1.

References

  • Ahmad I, Khan S, Naeem M, Hayat M, Azmi UR, Ahmed S, Murtaza G, Irfan M (2019) Molecular identification of ten palm species using DNA Fingerprinting. Int J Pure App Biosci 7(1):46–51

    Google Scholar 

  • Al-Qurainy F, Khan S, Al-Hemaid FM, Ajmal Ali A, Tarroum M, Ashraf M (2011) Assessing molecular signature for some potential date (Phoenix dactylifera L.) cultivars from Saudi Arabia, based on chloroplast DNA sequences rpoB and psbA trnH. Int J Mol Sci 12:6871–6880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asif MJ, Cannon CH (2005) DNA extraction from processed wood: a case study for the identification of an endangered timber species (Gonystylus bancanus). Plant Mol Biol Rep 23:185–192

    CAS  Google Scholar 

  • Atria M, Mil H, Baker WJ, Dransfield J, Welzen PC (2017) Morphometric analysis of rattan Calamus javensis complex (Arecaceae:Calamoideae). Syst Bot 42:494–506

    Google Scholar 

  • Baker WJ, Hedderson TA, Dransfield J (2000) Molecular phylogenetics of subfamily Calamoideae (Palmae) based on nrDNA ITS and cpDNA rps16 intron sequence data. Mol Phylogenet Evol 14:195–217

    CAS  PubMed  Google Scholar 

  • Baker DA, Stevenson DW, Little DP (2012) DNA barcode identification of black cohosh herbal dietary supplements. J AOAC Int 95(4):1023–1034

    CAS  PubMed  Google Scholar 

  • Ballardini M, Mercuri A, Littardi C et al (2013) The chloroplast DNA locus psbZ-trnfM as a potential barcode marker in Phoenix L. (Arecaceae). ZooKeys 365:71–82

    Google Scholar 

  • Bayton RP (2005) Borassus L. and the Borassoid palms: systematics and evolution. Ph.D. Thesis, University of Reading, UK

  • Beccari O (1908) Asiatic palms—Lepidocaryeae. Part II. The species of Calamus. Ann R Bot Gard 11:1–518

    Google Scholar 

  • Boer WJ (1968) The Genomoid palms. Verh Kon Ned Akad Wetensch Afd Natuurk Tweede Sect Ser 58:1–202

    Google Scholar 

  • CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797

    PubMed Central  Google Scholar 

  • Chase MW, Salamin N, Wilkinson M et al (2005) Land plants and DNA barcodes: short-term and long-term goals. Philos Trans R Soc Lond B Biol Sci 360:1889–1895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Yao H, Han J et al (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5:e8613

    PubMed  PubMed Central  Google Scholar 

  • China Plant BOL Group, Li DZ, Gao LM, Li HT et al (2011) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci USA 108:19641–19646

    PubMed Central  Google Scholar 

  • Daru BH, van der Bank M, Bello A, Yessoufou K (2017) Testing the reliability of standard and complementary DNA barcodes for the monocot subfamily Alooideae from South Africa. Genome 60:337–347

    CAS  PubMed  Google Scholar 

  • Denton AL, Mc Conaughy BL, Hall BD (1998) Usefulness of RNA polymerase II coding sequences for estimation of green plant phylogeny. Mol Biol Evol 15:1082–1085

    CAS  PubMed  Google Scholar 

  • Dev SA, Muralidharan EM, Sujanapal P, Balasundaran M (2014) Identification of market adulterants in East Indian sandalwood using DNA barcoding. Ann For Sci 71:517–522

    Google Scholar 

  • Dev SA, Sijimol K, Prathibha PS, Sreekumar VB, Muralidharan EM (2020) DNA barcoding as a valuable molecular tool for the certification of planting materials in bamboo. 3 Biotech 10:59

    PubMed  PubMed Central  Google Scholar 

  • Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:13–15

    Google Scholar 

  • Dransfield J (1992) The rattans of Sarawak. Royal Botanic Gardens and Sarawak Forest Department, Kew

    Google Scholar 

  • Dransfield J, Manokaran N (1994) Rattans. Plant Resources of South-East Asia No. 6. Indonesia, PROSEA Foundation, Bogor

  • Duan H, Wang W, Zeng Y, Guo M, Zhou YI (2019) The screening and identification of DNA barcode sequences for Rehmannia. Sci Rep 9 (1):17295

  • Edwards D, Horn A, Taylor D, Savolainen V, Hawkins JA (2008) DNA barcoding of a large genus, Aspalathus L. (Fabaceae). Taxon 57:1317–1327

    Google Scholar 

  • Elansary HO, Ashfaq M, Ali HM, Yessoufou K (2017) The first initiative of DNA barcoding of ornamental plants from Egypt and potential applications in horticulture industry. PLoS ONE 12(2):e0172170

    Google Scholar 

  • Enan MR, Ahmed A (2016) Cultivar-level phylogeny using chloroplast DNA barcode psbK-psbI spacers for identification of Emirati date palm (Phoenix dactylifera L.) varieties. Genet Mol Res 15:3. https://doi.org/10.4238/gmr.15038470

    Article  Google Scholar 

  • Erickson DL, Spouge J, Resch A, Weigt LA, Kress JW (2008) DNA barcoding in land plants: developing standards to quantify and maximize success. Taxon 57:1304–1316

    PubMed  PubMed Central  Google Scholar 

  • Feng S, Jiang Y, Wang S et al (2013) Molecular identification of Dendrobium Species (Orchidaceae) based on the DNA barcode ITS2 region and its application for phylogenetic study. Int J Mol Sci 16:21975–21988

    Google Scholar 

  • Ford CS, Ayres KL, Toomey N et al (2009) Selection of candidate coding DNA barcoding regions for use on land plants. Bot J Linn Soc 159:1–11

    Google Scholar 

  • Fuji T (2007) Outline of the research project “Methods to identify wood species and origin of timber of Southeast Asia”. In: Proceedings of the international symposium on development of improved methods to identify Shorea species wood and its origin, September 25–26, 2007. University of Tokyo, Tokyo and IUFRO, 19

  • Gao T, Yao H, Song JY et al (2010) Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2. J Ethnopharmacol 130:116–121

    CAS  PubMed  Google Scholar 

  • Gaut BS, Muse SV, Clark WD, Clegg MT (1992) Relative rates of nucleotide substitution at the rbcL locus of the monocotyledonous plants. J Mol Evol 35:292–303

    CAS  PubMed  Google Scholar 

  • Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93:10274–10279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gogoi B, Bhau BS (2018) DNA barcoding of the genus Nepenthes (Pitcher plant): a preliminary assessment towards its identification. BMC Plant Biol 18:153

    PubMed  PubMed Central  Google Scholar 

  • Gunn BF (2004) The phylogeny of the Cocoeae (Arecaceae) with emphasis on Cocos nucifera. Ann Mo Bot Gard 91:505–522

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis: Department of Microbiology, North Carolina State University

  • Han YW, Duan D, Ma XF et al (2016) Efficient identification of the forest tree species in Aceraceae using DNA barcodes. Front Plant Sci 7:1707

    PubMed  PubMed Central  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321

    CAS  Google Scholar 

  • Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the Neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101(41):14812–14817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hollingsworth ML, Clark LA, Forrest LL, Richardson J, Pennington RT et al (2009) Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Mol Ecol Resour 9:439–457

    CAS  PubMed  Google Scholar 

  • Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS ONE 6:e19254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob J, Mohanan N, Kariyappa K (2008) A new species of Calamus L. (Arecaceae) from Silent Valley, the Western Ghats, India. Rheedea 18:29–31

    Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405

    CAS  PubMed  Google Scholar 

  • Jeanson ML, Labat JN, Little DP (2011) DNA barcoding: a new tool for palm taxonomists? Ann Bot 108:1445–1451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joly S, Davies TJ, Archambault A et al (2014) Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead. Mol Ecol Resour 14:221–232

    CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Google Scholar 

  • Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE 2:e508

    PubMed  PubMed Central  Google Scholar 

  • Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102:8369–8374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuppu R, Manoharan S, Uthandakalaipandian R (2019) Phylogeographic study of freshwater fish Channa striata (Bloch) and Channa punctata (Bloch) construed using DNA barcodes between three rivers in southern Tamil Nadu region, India. Proc Zool Soc. https://doi.org/10.1007/s12595-019-00299-1

    Article  Google Scholar 

  • Kurian A (2018) Molecular systematics of rattans of south India. Doctoral thesis, Cochin University of Science and Technology, India, p 131

  • Lakshmana A, Renuka C (1990) New species of Calamus (Arecaceae) from India. JETBD 14:705–709

    Google Scholar 

  • Lee HL, Yi DK, Kim JS, Kim KJ (2007) Development of plant DNA barcoding markers from the variable noncoding regions of chloroplast genome. The Second International Barcode of Life Conference, Taipei, Taiwan. pp. 18–20

  • Lewis CE, Doyle JJ (2001) Phylogenetic utility of the nuclear gene malate synthase in the palm family (Arecaceae). Mol Phylogenet Evol 19:409–420

    CAS  PubMed  Google Scholar 

  • Lewis CE, Doyle JJ (2002) Phylogenetic analysis of tribe Areceae (Arecaceae) using two low-copy nuclear genes. Plant Syst Evol 236:1–17

    CAS  Google Scholar 

  • Lewis CE, Martinez N (2000) Identity of the Hyophorbe palms at the botanical garden of Cienfuegos, Cuba. Palms 44:93–97

    Google Scholar 

  • Loo AHB, Dransfield J, Chase MW, Baker WJ (2006) Low-copy nuclear DNA, phylogeny and the evolution of dichogamy in the betel nut palms and their relatives (Arecinae; Arecaceae). Mol Phylogenet Evol 39:598–618

    CAS  PubMed  Google Scholar 

  • Maia VH, Mata CSd, Franco LO, Cardoso MA, Cardoso SRS et al (2012) DNA barcoding Bromeliaceae: achievements and pitfalls. PLoS ONE 7(1):e29877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meier R, Shiyang K, Vaidya G, Ng PK (2006) DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55:715–728

    PubMed  Google Scholar 

  • Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:e422

    PubMed  PubMed Central  Google Scholar 

  • Moura C, Brambach F, Jair Hernandez Bado K et al (2019) Integrating DNA barcoding and traditional taxonomy for the identification of Dipterocarps in Remnant Lowland Forests of Sumatra. Plants (Basel, Switzerland) 8(11):461

    Google Scholar 

  • Naeem A, Khan AA, Cheema HMN, Khan IA, Buerkert A (2014) DNA barcoding for species identification in the palmae family. Genet Mol Res 13:10341–10348

    CAS  PubMed  Google Scholar 

  • Newmaster SG, Fazekas A, Ragupathy S (2006) DNA barcoding in the land plants: evaluation of rbcL in a multigene tiered approach. Can J Bot 84:335–341

    CAS  Google Scholar 

  • Norup MV (2006) A molecular systematic study of Heterospathe and Rhopaloblaste (Arecaceae, Areceae). Masters Thesis, University of Aarhus

  • Oxelman B, Bremer B (2000) Discovery of paralogous nuclear gene sequences coding for the second-largest subunit of RNA polymerase II (RPB2) and their phylogenetic utility in Gentianales of the asterids. Mol Biol Evol 17:1131–1145

    CAS  PubMed  Google Scholar 

  • Oxelman B, Yoshikawa N, Mcconaughy BL, Luo J, Denton AL, Hall BD (2004) RPB2 gene phylogeny in flowering plants, with particular emphasis on asterids. Mol Phylogenet Evol 32:462–479

    CAS  PubMed  Google Scholar 

  • Pang X, Song J, Zhu Y, Xu H, Huang L et al (2010) Applying plant DNA barcodes for Rosaceae species identification. Cladistics 27:165–170

    Google Scholar 

  • Paracchini V, Petrillo M, Lievens A et al (2017) Novel nuclear barcode regions for the identification of flatfish species. Food Control 79:297–308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Percy DM, George WA, Quentin CC et al (2014) Understanding the spectacular failure of DNA barcoding in willows (Salix): does this result from a trans-specific selective sweep? Mol Ecol 19:4737–4756

    Google Scholar 

  • Pfeil BE, Brubaker CL, Craven LA, Crisp MD (2004) Paralogy and orthology in the Malvaceae RPB2 gene family: investigation of gene duplication in hibiscus. Mol Biol Evol 21:1428–1437

    CAS  PubMed  Google Scholar 

  • Pillon Y, Johansen J, Sakishima T et al (2013) Potential use of low-copy nuclear genes in DNA barcoding: a comparison with plastid genes in two Hawaiian plant radiations. BMC Evol Biol 13:35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808

    PubMed  Google Scholar 

  • Ran JH, Wang PP, Zhao HJ, Wang XQ (2010) A test of seven candidate barcode regions from the plastome in Picea (Pinaceae). J Integr Plant Biol 52:1109–1126

    CAS  PubMed  Google Scholar 

  • SPSS Inc. Released (2007) SPSS for Windows, Version 17.0. Chicago, SPSS Inc

  • Renuka C (1986) A new species of Calamus (Palmae) from India. Kew Bull 42:433–435

    Google Scholar 

  • Renuka C (1999) Notes on the identity of Calamus delessertianus Becc. Rheedea 9:81–84

    Google Scholar 

  • Renuka C (2001) Palms of India: status, threats and conservation strategies. In: Shaanker UR, Ganeshaiah KN, Bawa KS (eds) Forest genetic resources: status, threats and conservation strategies. Oxford & IBH Publishing Co. Pvt. Ltd., Calcutta, pp 197–209

    Google Scholar 

  • Renuka C, Sasidharan N, Anto P (1997) A new species of Calamus (Arecaceae) from Silent Valley, Kerala, India. Rheedea 7:69–71

    Google Scholar 

  • Renuka C, Bhat KV, Pandalai RC (2010) Rattans of India: taxonomy, biology and utilization. Kerala Forest Research Institute (KFRI), Thrissur, p 339

  • Roncal J, Francisco-Ortega J, Asmussen CB, Lewis CE (2005) Molecular phylogenetics of tribe Geonomeae (Arecaceae) using nuclear DNA sequences of phosphoribulokinase and RNA polymerase II. Syst Bot 30:275–283

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    CAS  PubMed  Google Scholar 

  • Roy S, Tyagi A, Shukla V et al (2010) Universal plant DNA barcode loci may not work in complex groups: a case study with Indian berberis species. PLoS ONE 5:e13674

    PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees”. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sang T (2002) Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit Rev Biochem Mol Biol 37:121–147

    CAS  PubMed  Google Scholar 

  • Sass C, Little DP, Stevenson DW, Specht CD (2007) DNA barcoding in the Cycadales: testing the potential of proposed barcoding markers for species identification of Cycads. PLoS ONE 2(11):e1154

    PubMed  PubMed Central  Google Scholar 

  • Scarcelli N, Barnaud A, Eiserhardt W, Treier UA, Seveno M, d’Anfray A, Vigouroux Y, Pintaud JC (2011) A set of 100 chloroplast primer pairs to study population genetics and phylogeny in monocotyledons. PLoS ONE 6:e19954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senthilkumar U (2015) Phylogenetics and phylogeography of climbing palms of India (Tribe Calameae, Arecaceae). Doctoral thesis, Madras Christian College, India, p 205

  • Small R, Cronn R, Wendel J (2004) L.A.S Johnson Review No.2. Use of nuclear genes for phylogeny reconstruction in plants. Aust Syst Bot 17:145–170

    CAS  Google Scholar 

  • Spooner DM (2009) DNA barcoding will frequently fail in complicated groups: an example in wild potatoes. Am J Bot 96:1177–1189

    CAS  PubMed  Google Scholar 

  • Sreekumar VB (2005) Systematics and phylogeny of the genus Calamus L. (Arecaceae) in the Western Ghats. Doctoral thesis, University of Calicut, India, p 140

  • Sreekumar VB, Henderson A (2014) Nomenclatural notes on Indian Calamus (Arecaceae). Phytotaxa 166:145–149

    Google Scholar 

  • Stoeckle M (2003) Taxonomy, DNA, and the barcode of life. Bioscience 53(9):2–3

    Google Scholar 

  • Tamura K, Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S (2012) Estimating divergence times in large molecular phylogenies. Proc Natl Acad Sci USA 109:19333–19338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Techen N, Parveen I, Pan Z, Khan IA (2014) DNA barcoding of medicinal plant material for identification. Curr Opin Biotechnol 25:103–110

    CAS  PubMed  Google Scholar 

  • Thomas MM, Garwood NC, Baker WJ et al (2006) Molecular phylogeny of the palm genus Chamaedorea, based on the low-copy nuclear genes PRK and RPB2. Mol Phylogenet Evol 38:398–415

    CAS  PubMed  Google Scholar 

  • Uhl N, Dransfield J (1987) Genera Palmarum. Allen Press, Lawrence

    Google Scholar 

  • Uhl NW, Dransfield J, Davis JI, Luckow MA, Hansen KS, Doyle JJ (1995) Phylogenetic relationships among palms: cladistic analyses of morphological and chloroplast DNA restriction site variation. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons: systematics and evolution, vol 2. Royal Botanic Gardens, Kew, pp 623–661

    Google Scholar 

  • Umapathy S, Duvuru N, Munivenkatappa S, Uma Shaanker R, Gudasalamani R (2015) Species delimitation in congenerics of genus Daemonorops from India using DNA barcodes. Commun Plant Sci 5(1–2):1–8

    Google Scholar 

  • Valentini A, Miquel C, Nawaz MA et al (2009) New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. Mol Ecol Resour 9:51–60

    CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wilson MA, Gaut B, Clegg MT (1990) Chloroplast DNA evolves slowly in the palm family (Arecaceae). Mol Biol Evol 7:303–314

    CAS  PubMed  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HQ, Dong YR, Gu ZJ, Liang N, Yang JB (2012) A preliminary assesment of matK, rbcL and trnH-psbA as DNA barcodes for Calamus (Arecaceae) species in China with a note on ITS. Ann Bot Fenn 49:319–330

    Google Scholar 

  • Yu J, Xue JH, Zhou SL (2011) New universal matK primers for DNA barcoding angiosperms. J Syst Evol 49:176–181

    Google Scholar 

  • Zona S, Ortega JF, Jestrow B, Baker WJ, Lewis CE (2011) Molecular phylogenetics of the palm subtribe Ptychospermatinae (Arecaceae). Am J Bot 98:1716–1726

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kerala Forest Department, Govt. of Kerala and Karnataka Forest Department, Govt. of Karnataka for their permission to collect samples. The financial support received from Kerala State Council for Science Technology and Environment (KSCSTE) is also acknowledged.

Funding

The financial support for this study was received from Kerala State Council for Science, Technology and Environment (KSCSTE) (Grant No. KFRI RP 617/2011).

Author information

Authors and Affiliations

Authors

Contributions

AK: contributed towards conducting wet lab experiments, sample collections from the field, writing of the paper and analysing the data, SAD: involved in writing of the paper and designing the project, SVB: sample collections from the field site, identification and writing of the paper, MEM: involved in coordination of project and writing of the paper

Corresponding author

Correspondence to E. M. Muralidharan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig.1.

PCR amplified products of the analysed DNA barcode loci (TIFF 202 kb)

Supplementary Fig.2.

Multiple Sequence Alignment showing species specific differences in the Calamus species using RPB2 (TIFF 2057 kb)

Supplementary Fig.3.

Multiple Sequence Alignment showing 300bp deletion in the C. hookerianus and C. pseudotenuis using psbA-trnH. (TIFF 580 kb)

Supplementary Fig.4.

Multiple Sequence Alignment showing transversions in the Calamus gamblei species complex (TIFF 1553 kb)

Supplementary Fig.5.

Neighbor-joining tree (NJ) of the genus Calamus using RPB2 based on p-distance using MEGA v.6.0 with bootstrap percentage value shown below (TIFF 53 kb)

Supplementary Fig.6.

Phylogenetic tree with posterior probability using RPB2 of the genus Calamus (TIFF 553 kb)

Supplementary Fig.7.

Phylogenetic tree with posterior probability using RPB2 of the family Arecaceae (TIFF 114 kb)

Supplementary Table S1.

List of samples collected for DNA Barcoding, their location and GenBank Accession numbers (DOC 118 kb)

Supplementary Table S2.

List of sequences downloaded from GenBank and their Accession numbers. (DOC 29 kb)

Supplementary File 1.

Multiple Sequence Alignment of RPB2 (MAS 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurian, A., Dev, S.A., Sreekumar, V.B. et al. The low copy nuclear region, RPB2 as a novel DNA barcode region for species identification in the rattan genus Calamus (Arecaceae). Physiol Mol Biol Plants 26, 1875–1887 (2020). https://doi.org/10.1007/s12298-020-00864-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00864-5

Keywords

Navigation