Skip to main content
Log in

Differential Modulation in Metabolites Revealed with the Improvement in the Shelf-Life of Alphonso Fruits

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Globally farmers have difficulty in extending the shelf-life of the tropical fruits due to their perishable nature. The present study aimed to assess the effect of hexanal nano-formulation treatment (NFT) on the shelf-life of Alphonso mango. Further, volatilomics was performed to explore the molecular basis of such effect. Untreated and treated fruits were sampled starting from 5th to 21st day after NFT at an interval of 4 days. Moderate changes in visual and digital colour parameters were evident from the intact and dissected fruits of NFT set compared to untreated fruits. Biochemical assays affirmed the phenotypic differences with significant changes in the colour imparting compounds like carotenoids and anthocyanins among them. Further, gas chromatography–mass spectrometry analysis revealed significant qualitative and quantitative variations in the different classes of compounds like lactones, furanones, esters, aldehydes and alcohols. Some of the key metabolites showed differential modulations among the NFT and untreated fruit sets indicating their potential role in various processes, which ultimately might have resulted in delayed ripening of the mango. Overall, this study has demonstrated the beneficial effect of hexanal and identified important metabolites with the enhanced shelf-life in Alphonso that could be useful for farmers and mango-based food/flavour industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

BHT:

Butylated hydroxytoluene

GC-FID:

Gas chromatography-flame ionization detector

GC–MS:

Gas chromatography–mass spectrometry

HCA:

Hierarchical cluster analysis

HGA:

Homogentisate

HPPD:

p-Hydroxyphenyl pyruvate dioxygenase

NFT:

Nano-formulation treatment/treated

PA:

Phosphatidic acid

PCA:

Principal component analysis

PLD:

Phospholipase D

SD:

Standard deviation

VOCs:

Volatile organic compounds

References

  1. Dar, M. S., Oak, P., Chidley, H., Deshpande, A., Giri, A., & Gupta, V. (2016). Nutrient and flavor content of Mango (Mangifera indica L.) cultivars: An appurtenance to the list of staple foods. In M. Simmonds & V. Preedy (Eds.), Nutritional composition of fruit cultivars (pp. 445–467). Switzerland: Elsevier.

    Google Scholar 

  2. Monterocalderon, M., Rojasgrau, M. A., & Martínbelloso, O. (2010). Aroma profile and volatiles odor activity along gold cultivar pineapple flesh. Journal of Food Science, 75, S506–S512.

    Article  CAS  Google Scholar 

  3. Negri, A. S., Allegra, D., Simoni, L., Rusconi, F., Tonelli, C., Espen, L., et al. (2015). Comparative analysis of fruit aroma patterns in the domesticated wild strawberries “Profumata di Tortona” (F. moschata) and “Regina delle Valli” (F. vesca). Frontiers in Plant Science, 6, 56.

    PubMed  PubMed Central  Google Scholar 

  4. Ma, X. W., Su, M. Q., Wu, H. X., Zhou, Y. G., & Wang, S. B. (2018). Analysis of the volatile profile of core Chinese mango germplasm by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Molecules, 23, 1480.

    Article  CAS  Google Scholar 

  5. Kulkarni, R. S., Chidley, H. G., Pujari, H. G., Giri, A. P., & Gupta, V. S. (2012). Geographic variation in the flavour volatiles of Alphonso mango. Food Chemistry, 130, 58–66.

    Article  CAS  Google Scholar 

  6. Pandit, S. S., Kulkarni, R. S., Chidley, H. G., Giri, A. P., Pujari, K. H., Kollner, T. G., et al. (2009). Changes in volatile composition during fruit development and ripening of ‘Alphonso’ mango. Journal of the Science of Food and Agriculture, 89, 2071–2081.

    Article  CAS  Google Scholar 

  7. Chidley, H. C., Kulkarni, R. S., Pujari, H. G., Giri, A. P., & Gupta, V. S. (2013). Spatial and temporal changes in the volatile profile of Alphonso mango upon exogenous ethylene treatment. Food Chemistry, 136, 585–594.

    Article  CAS  Google Scholar 

  8. Chidley, H. C., Oak, P., Deshpande, A., Pujari, H. G., Giri, A. P., & Gupta, V. S. (2016). Molecular cloning and characterization of O-methyltransferase from Mango fruit (Mangifera indica cv. Alphonso). Molecular Biotechnology, 58, 340–350.

    Article  CAS  Google Scholar 

  9. Jincy, M., Djanaguiraman, M., Jeyakumar, P., Subramanian, K. S., Jayasankar, S., & Paliyath, G. (2017). Inhibition of phospholipase D enzyme activity through hexanal leads to delayed mango (Mangifera indica L.) fruit ripening through changes in oxidants and antioxidant enzymes activity. Scientia Horticulturae, 218, 316–325.

    Article  CAS  Google Scholar 

  10. Herianus, J. D., Singh, L. Z., & Tan, S. C. (2003). Aroma volatiles production during fruit ripening of Kensington Pride mango. Postharvest Biology and Technology, 27, 323–336.

    Article  Google Scholar 

  11. Deshpande, A. B., Anamika, K., Jha, V., Chidley, H. G., Oak, P., Kadoo, N. Y., et al. (2017). Transcriptional transitions in Alphonso mango (Mangifera indica L.) during fruit development and ripening explain its distinct aroma and shelf life characteristics. Science Report, 7, 8711.

    Article  CAS  Google Scholar 

  12. Paliyath, G., & Murr, D. P. (2008). Biochemistry of fruits. Postharvest biology and technology of fruit, vegetables, and flowers (pp. 19–50). Ames: Wiley-Blackwell.

    Google Scholar 

  13. Paliyath, G., Tiwari, K., Yuan, H., & Whitaker, B. D. (2008). Structural deterioration in produce: phospholipase D, membrane deterioration, and senescence. Postharvest biology and technology of fruit, vegetables, and flowers (pp. 195–239). Ames: Wiley-Blackwell.

    Google Scholar 

  14. Paliyath, G., & Subramanian, J. (2008). Phospholipase D inhibition technology for enhancing shelf life and quality. Postharvest biology and technology of fruit, vegetables, and flowers (pp. 240–245). Ames: Wiley-Blackwell.

    Google Scholar 

  15. Foster, D. A., & Xu, L. (2003). Phospholipase D in cell proliferation and cancer. Molecular Cancer Research, 11, 789–800.

    Google Scholar 

  16. Paliyath, G., Pinhero, R. G., Yada, R. Y., & Murr, D. P. (1999). Effect of processing conditions on phospholipase D activity of corn kernel subcellular fractions. Journal of Agriculture and Food Chemistry, 47, 2579–2588.

    Article  CAS  Google Scholar 

  17. Kayal, W. E., Paliyath, G., Sullivan, J. A., & Subramanian, J. (2017). Phospholipase D inhibition by hexanal is associated with calcium signal transduction events in raspberry. Horticulture Research, 4, 17042.

    Article  Google Scholar 

  18. Karthika, S., Nanda Kumar, N. B., Gunasekaran, K., & Subramanian, K. S. (2015). Biosafety of nanoemulsion of hexanal to honey bees and natural enemies. Indian Journal of Science and Technology, 8, 30.

    Google Scholar 

  19. Anusuya, P., Nagaraj, R., Janavi, G. J., Subramanian, K. S., Paliyath, G., & Subramanian, J. (2016). Pre-harvest sprays of hexanal formulation for extending retention and shelf-life of mango (Mangifera indica L.) fruits. Scientia Horticulturae, 211, 231–240.

    Article  CAS  Google Scholar 

  20. MOACFW. (2012). Annual report of Min. of Agri. Com. & Farmers Welfare, Govt. of India, New Delhi, India. https://agricoop.nic.in/annual-report.

  21. Deshpande, A. B., Chidley, H. G., Oak, P. S., Pujari, K. H., Giri, A. P., & Gupta, V. S. (2016). Data on changes in the fatty acid composition during fruit development and ripening of three mango cultivars (Alphonso, Pairi and Kent) varying in lactone content. Data Brief, 9, 480.

    Article  Google Scholar 

  22. Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178–182.

    CAS  Google Scholar 

  23. Liu, M., Li, X. Q., Weber, C., Lee, C. Y., Brown, J., & Liu, R. H. (2002). Antioxidant and antiproliferative activities of raspberries. Journal of Agriculture and Food Chemistry, 50, 2926–2930.

    Article  CAS  Google Scholar 

  24. Fish, W. W., Perkins-Veazie, P., & Collins, J. K. (2002). A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. Journal of Food Composition and Analysis, 15, 309–317.

    Article  CAS  Google Scholar 

  25. Landau, S., & Rabe-Hesketh, S. (1999). StatView for windows, version 5.0. Statistical Methods in Medical Research, 8, 337–341.

    Article  CAS  Google Scholar 

  26. Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., et al. (2018). MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 46, W486–494.

    Article  CAS  Google Scholar 

  27. Prescott, A. G., & John, P. (1996). Dioxygenases: Molecular structure and role in plant metabolism. Annual Review of Plant Biology, 47, 245–271.

    Article  CAS  Google Scholar 

  28. Norris, S. R., Shen, X., & Della, P. D. (1998). Complementation of the Arabidopsis pds1 mutation with the gene encoding p-hydroxyphenylpyruvate dioxygenase. Plant Physiology, 117, 1317–1323.

    Article  CAS  Google Scholar 

  29. John, J., Subbarayan, C., & Cama, H. (2006). Carotenoids in three stages of ripening of mango. Journal of Food Science, 35, 262–265.

    Article  Google Scholar 

  30. Maldonado-Celis, M. E., Yahia, E. M., Bedoya, R., Landázuri, P., Loango, N., Aguillón, J., et al. (2019). Chemical composition of Mango (Mangifera indica L.) fruit: Nutritional and phytochemical compounds. Frontiers in Plant Science, 10, 1073.

    Article  Google Scholar 

  31. Yashoda, H. M., Prabha, T. N., & Tharanathan, R. N. (2005). Mango ripening-chemical and structural characterization of pectic and hemicellulosic polysaccharides. Carbohydrate Research, 340, 1335–1342.

    Article  CAS  Google Scholar 

  32. Pandit, S. S., Chidley, H. G., Kulkarni, R. S., Pujari, K. H., Giri, A. P., & Gupta, V. S. (2009). Cultivar relationships in mango based on fruit volatile profiles. Food Chemistry, 114, 363–372.

    Article  CAS  Google Scholar 

  33. Li, L., Ma, X. W., Zhan, R. L., Wu, H. X., Yao, Q. S., Xu, W. T., et al. (2017). Profiling of volatile fragrant components in a mini-core collection of mango germplasms from seven countries. PLoS ONE, 12(12), e0187487.

    Article  CAS  Google Scholar 

  34. Lopez-Cobo, A., Martín-García, B., Segura-Carretero, A., Fernández-Gutiérrez, A., & Gómez-Caravaca, A. M. (2017). Comparison of two stationary phases for the determination of phytosterols and tocopherols in mango and its by-products by GC-QTOF-MS. International Journal of Molecular Sciences, 18, 1594.

    Article  CAS  Google Scholar 

  35. Pagadala Damodaram, K. J., Aurade, R. M., Kempraj, V., Roy, T. K., Shivashankara, K. S., & Verghese, A. (2015). Salicylic acid induces changes in mango fruit that affect oviposition behavior and development of the oriental fruit fly Bactrocera dorsalis. PLoS ONE, 10(9), e0139124.

    Article  CAS  Google Scholar 

  36. Syeda, F. A., Habib-ur-Rahman, Choudahry, M. I., & Atta-ur-Rahman. (2011). Gas chromatography-mass spectrometry (GC-MS) analysis of petroleum ether extract (oil) and bio-assays of crude extract of Iris germanica. International Journal of Genetics and Molecular Biology, 3, 95–100.

    Google Scholar 

  37. Bender, R. J., Brecht, J. K., Sargent, S. A., & Huber, D. J. (2000). Mango tolerance to reduced oxygen levels in controlled atmosphere storage. Journal of the American Society for Horticultural Sciences, 125(6), 707–713.

    Article  Google Scholar 

Download references

Acknowledgements

MSD acknowledges Council of Scientific and Industrial Research (CSIR, New Delhi, India) for the fellowship of JRF & SRF, and the Academy of Scientific and Innovative Research (AcSIR), India, for enrolment in the Ph.D. programme. Authors thank Mr. Shounak Jagdale (CSIR-NCL) for the help during data analysis.

Funding

APG and VSG are thankful to the funding agency, CSIR, for the research under project CSC0133 (FUNHEALTH) to CSIR-NCL. KSS thanks the Global Affairs Canada and International Development Research Center, Canada, for funding the project "Enhanced Preservation of Fruits using Nanotechnology" at TNAU, Coimbatore.

Author information

Authors and Affiliations

Authors

Contributions

APG, BBD and KSS conceived the idea. MSD, BBD, VSG and APG planned the work, while HS, JS and KSS collected and treated the mango samples with hexanal nano-formulation. MSD and BBD carefully arranged, harvested and extracted all the fruit samples as per the stages. MSD carried out all the experiments post--nano-formulation treatment and analysed the data with inputs from BBD and APG. MSD prepared the figures and tables with the help from BBD and APG. Subsequently MSD and BBD wrote the initial draft. All the authors contributed in editing the manuscript and approved the final manuscript.

Corresponding authors

Correspondence to Bhushan B. Dholakia or Ashok P. Giri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, M.S., Dholakia, B.B., Shanmugam, H. et al. Differential Modulation in Metabolites Revealed with the Improvement in the Shelf-Life of Alphonso Fruits. Mol Biotechnol 62, 508–520 (2020). https://doi.org/10.1007/s12033-020-00267-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-020-00267-7

Keywords

Navigation