Skip to main content
Log in

In Situ Observation of the MnS Precipitation Behavior in High-Sulfur Microalloyed Steel Under Different Cooling Rates

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In situ observation of the precipitation behavior of MnS in a high-sulfur microalloyed steel has been conducted by means of a confocal laser scanning microscopy (CLSM) with cooling rates increased from 50 to 400 °C/min. Differential scanning calorimetry analysis and thermodynamic calculation were carried out prior to and following the CLSM experiments using scanning electron microscopy (SEM) and X-ray energy-dispersive spectrometer. The results suggested that the initial MnS precipitate temperature decreased from 1440.0 °C to 1429.6 °C and the final temperature reduced from 1413.7 °C to 1381.6 °C as the cooling rate increased from 50 to 400 °C/min in the CLSM test. Three typical MnS morphologies of small angular, globular and larger dendrite cluster MnS were observed in the melting surface. Furthermore, with an increase in the supersaturation of MnS and a significant reduction of the local solidification time when the cooling rate increased from 50 to 400 °C/min, the large clusters MnS at interdendritic regions became thinner and more small angular MnS precipitates formed at dendrite crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.J. Balart, C.L. Davis, and M. Strangwood: Mater. Sci. Eng. A, 2000, vol. 284, pp.1-13.

    Article  Google Scholar 

  2. N. Tsunekage, and H. Tsubakino: ISIJ Int., 2001, vol. 41, pp. 498-505.

    Article  CAS  Google Scholar 

  3. M. Wu, W. Fang, R.M. Chen, B. Jiang, H.B. Wang, Y.Z. Liu, and H.L. Liang: Mater. Sci. Eng. A, 2019, vol. 744, pp. 324-34.

    Article  CAS  Google Scholar 

  4. Y. Wang, L. Zhang, H. Zhang, X Zhao, S. Wang, and W. Yang: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1004-13.

    Article  Google Scholar 

  5. S. Malekjani, I.B. Timokhina, J. Wang, P.D. Hodgson, and N.E. Stanford: Mater. Sci. Eng. A, 2013, vol. 581, pp. 39-47.

    Article  CAS  Google Scholar 

  6. C.E. Sims: Trans. Am. Inst. Min. Metall. Eng., 1959, vol. 215, pp. 367-93.

    CAS  Google Scholar 

  7. P.P. Mohla, and J. Beech: J. Iron Steel Inst., 1969, vol. 207, pp. 177-80.

    CAS  Google Scholar 

  8. M. Li, F. Wang, C. Li, Z. Yang, Q. Meng, and S. Tao: Int. J. Miner. Metall. Mater., 2015, vol. 22, pp. 589-97.

    Article  CAS  Google Scholar 

  9. P. Shen, and J.X. Fu: Materials, 2019, vol. 12, pp. 197-214.

    Article  CAS  Google Scholar 

  10. I. Sohn, and R. Dippenaar: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2083-94.

    Article  Google Scholar 

  11. X.F. Zhang, Y. Komizo, T. Yokota, K. Yasuda, and K. Oi: Mater. Sci. Technol., 2013, vol. 29, pp. 1363-72.

    Article  CAS  Google Scholar 

  12. D. Phelan, M. Reid, N. Stanford, and R. Dippenaar: JOM, 2006, vol. 58, pp. 67-69.

    Article  CAS  Google Scholar 

  13. A. Lombardi, W. Mu, C. Ravindran, N. Dogan, and M. Barati: J. Alloy. Compd., 2018, vol. 747 pp. 131-39.

    Article  CAS  Google Scholar 

  14. M.M. Attallah, H. Terasaki, R.J. Moat, S.E. Bray, Y. Komizo, and M. Preuss: Mater. Char., 2011, vol. 62, pp. 760-67.

    Article  CAS  Google Scholar 

  15. S. Kimura, K. Nakajima, S. Mizoguchi, and H. Hasegawa: Metall. Mater. Trans. A, 2002, vol. 33, pp. 427-35.

    Article  CAS  Google Scholar 

  16. Y. Ueshima, Y. Sawada, S. Mizoguchi, and H.Kajioka: Metall. Mater. Trans. A, 1989, vol. 20, pp. 1375-83.

    Article  CAS  Google Scholar 

  17. N. Yuki, H. Shibata, and T. Emi, ISIJ Int., 1998, vol. 38, pp. 317-23.

    Article  CAS  Google Scholar 

  18. X. Shao, X. Wang, M. Jiang, W. Wang, and F. Huang: ISIJ Int., 2011, vol. 51, pp. 1994-2000.

    Google Scholar 

  19. Y. Luo, J. Zhang, Z. Liu, C. Xiao, and S. Wu: Acta Metall. Sin. (Engl. Lett.), 2011, vol. 24, pp. 326–34.

  20. W. Mu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2379-88.

    Article  Google Scholar 

  21. D. Liu, X. Kang, B. Sang, and D. Li, Acta Metall. Sin. (Engl. Lett.), 2011, vol. 24, pp. 54–64.

  22. Y. Hao, J. Li, X. Li, W. Liu, G. Cao, C. Li, and Z. Liu: J. Mater. Process. Tech. 2020, vol. 275, pp. 116326.

    Article  CAS  Google Scholar 

  23. L. Gui, M. Long, S. Wu, Z. Dong, D. Chen, Y. Huang, H. Duan, and L. Vitos, J. Mater. Sci. & Tech., 2019, vol. 35, pp. 2383-95.

    Article  Google Scholar 

  24. J. Zeng, W.Q. Chen, and H.G. Zheng: Ironmak. Steelmak., 2017, vol. 44, pp. 676-84.

    Article  CAS  Google Scholar 

  25. D. You, S.K. Michelic, G. Wieser, and C. Bernhard: J. Mater. Sci., 2017, vol. 52, pp. 1797-1812.

    Article  CAS  Google Scholar 

  26. I. Sunagawa: Morphology of Crystals, Part B: Fine Particles, Minerals and Snow, Terra Scientific Publishing Company, Tokyo, 1987.

    Google Scholar 

  27. Y.M. Won, and B.G. Thomas: Metall. Mater. Trans. A, 2001, vol. 32, pp. 1755-67.

    Article  CAS  Google Scholar 

  28. Y.W. Huang, M.J. Long, P. Liu, D.F. Chen, H.B. Chen, L.T. Gui, T. Liu, and S. Yu: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2504-15.

    Article  Google Scholar 

  29. X. Zhang, C. Yang, and L. Zhang: Metall. Res. Technol., 2020, vol. 117, pp. 110.

    Article  Google Scholar 

  30. R. Dekkers, B. Blanpain, and P. Wollants: Metall. Mater. Trans. B, 2003, vol. 34, pp. 161-71.

    Article  CAS  Google Scholar 

  31. H. Goto, K. Miyazawa, K. Yamaguchi, S. Ogibayashi, and K. Tanaka: ISIJ Int., 1994, vol. 34, pp. 414-19.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 51904345), Guangxi Scientific Technology Project (AD 18281073), Hunan Scientific Technology Projects (2018RS3022, 2018WK2051), Opening Foundation of the State Key Laboratory of Advanced Metallurgy (KF19-04), and Hunan Provincial Innovation Foundation for Postgraduate (CX2018B089). Jie Zeng and Chenyang Zhu contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 21, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Zhu, C., Wang, W. et al. In Situ Observation of the MnS Precipitation Behavior in High-Sulfur Microalloyed Steel Under Different Cooling Rates. Metall Mater Trans B 51, 2522–2531 (2020). https://doi.org/10.1007/s11663-020-01946-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01946-1

Navigation