Skip to main content
Log in

Fluid-Based Triboelectric Nanogenerators: A Review of Current Status and Applications

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

In the last decades, numerous mechanical energy sources have been utilized as primary energies to produce electricity by using different energy harvesting technologies, such as electromagnetic, and piezoelectric technologies. Among these mechanical energy sources, fluid flow energy, defined by water flow and airflow energies, is one of the most important and wide-used renewable energy sources, which is available in nature under the form of raindrops, streams, ocean waves and wind energies. Since the first introduced in 2012 by Wang’s research group, the triboelectric nanogenerator (TENG) has become one of the most vital innovations in harvesting energy technologies. Many TENGs devices have been developed and demonstrated its potential in harvesting fluid flow energy. Here, a review of the fluid-based TENG (F-TENG) is presented, including water-based and air-based, with the fundamental theories, basic mode of operations, its current designs, and application. The development of F-TENG is demonstrated via the divers of design structure, high potential application for power generation, and high sensitivity for self-powered sensing systems. F-TENG shows promising potential for large-scale application, and hybrid with other energy harvesting technologies. Besides, this article also considers the recent difficulties which reduce the performance of F-TENG, then presents the ways for improving their efficiencies. Finally, this study provides a point of view based on the facing challenge and future development trend of the F-TENG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Farhad, S., Saffar-Avval, M., & Younessi-Sinaki, M. (2008). Efficient design of feedwater heaters network in steam power plants using pinch technology and exergy analysis. International Journal of Energy Research, 32(1), 1–11.

    Google Scholar 

  2. Kaur, N., & Pal, K. (2018). Triboelectric nanogenerators for mechanical energy harvesting. Energy Technology, 6(6), 958–997.

    Google Scholar 

  3. Priya, S. (2007). Advances in energy harvesting using low profile piezoelectric transducers. Journal of Electroceramics, 19(1), 167–184.

    MathSciNet  Google Scholar 

  4. C. Zhao et al (2019). Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting. Nano Energy, 57, 440–449.

    Google Scholar 

  5. Chamanian, S., Uluşan, H., Zorlu, Ö, Baghaee, S., Uysal-Biyikoglu, E., & Külah, H. (2016). Wearable battery-less wireless sensor network with electromagnetic energy harvesting system. Sensors and Actuators A: Physical, 249, 77–84.

    Google Scholar 

  6. Hao, C., et al. (2019). Two-dimensional triboelectric-electromagnetic hybrid nanogenerator for wave energy harvesting. Nano Energy, 58, 147–157.

    Google Scholar 

  7. Pan, S., & Zhang, Z. (2018). Fundamental theories and basic principles of triboelectric effect: A review. Friction, 7(1), 2–17.

    Google Scholar 

  8. Wang, S., Lin, L., & Wang, Z. L. (2015). Triboelectric nanogenerators as self-powered active sensors. Nano Energy, 11, 436–462.

    Google Scholar 

  9. Wang, N., et al. (2019). Kelp-inspired biomimetic triboelectric nanogenerator boosts wave energy harvesting. Nano Energy, 55, 541–547.

    Google Scholar 

  10. Liu, W., et al. (2019). Torus structured triboelectric nanogenerator array for water wave energy harvesting. Nano Energy, 58, 499–507.

    Google Scholar 

  11. Kim, H., Zhou, Q., Kim, D., & Oh, I.-K. (2020). Flow-induced snap-through triboelectric nanogenerator. Nano Energy, 68, 104379.

    Google Scholar 

  12. Rodrigues, C. R. S., Alves, C. A. S., Puga, J., Pereira, A. M., & Ventura, J. O. (2016). Triboelectric driven turbine to generate electricity from the motion of water. Nano Energy, 30, 379–386.

    Google Scholar 

  13. Hinchet, R., et al. (2019). Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science, 365(6452), 491–494.

    Google Scholar 

  14. Kwak, S. S., et al. (2019). Butylated melamine formaldehyde as a durable and highly positive friction layer for stable, high output triboelectric nanogenerators. Energy and Environmental Science, 12(10), 3156–3163.

    Google Scholar 

  15. Kim, J., et al. (2020). High permittivity CaCu3Ti4O12 particle-induced internal polarization amplification for high performance triboelectric nanogenerators. Advanced Energy Materials, 10(9), 1903524.

    Google Scholar 

  16. Seung, W., et al. (2017). Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties. Advanced Energy Materials, 7(2), 1600988.

    Google Scholar 

  17. Xu, M., et al. (2019). A highly-sensitive wave sensor based on liquid–solid interfacing triboelectric nanogenerator for smart marine equipment. Nano Energy, 57, 574–580.

    Google Scholar 

  18. Shi, Q., Wang, H., Wang, T., & Lee, C. (2016). Self-powered liquid triboelectric microfluidic sensor for pressure sensing and finger motion monitoring applications. Nano Energy, 30, 450–459.

    Google Scholar 

  19. Wang, M., et al. (2018). Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring. ACS Nano, 12(6), 6156–6162.

    Google Scholar 

  20. Wang, P., et al. (2018). An ultra-low-friction triboelectric-electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor. ACS Nano, 12(9), 9433–9440.

    Google Scholar 

  21. Bilgen, S., Kaygusuz, K., & Sari, A. (2004). Renewable energy for a clean and sustainable future. Energy Sources, 26(12), 1119–1129.

    Google Scholar 

  22. Lin, Z., et al. (2019). Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy, 64, 103908.

    Google Scholar 

  23. Fan, X., et al. (2019). Triboelectric-electromagnetic hybrid nanogenerator driven by wind for self-powered wireless transmission in internet of things and self-powered wind speed sensor. Nano Energy, 68, 104319.

    Google Scholar 

  24. Zhao, T., Cao, S., Yang, S., Guo, R., Sang, S., & Zhang, H. (2019). A self-powered counter/timer based on a clock pointer-like frequency-tunable triboelectric nanogenerator for wind speed detecting. Nano Energy, 65, 104025.

    Google Scholar 

  25. P. Cheng et al (2018). Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy. Nano Energy, 54, 156–162.

    Google Scholar 

  26. Olsen, M., Zhang, R., Ortegren, J., Andersson, H., Yang, Y., & Olin, H. (2019). Frequency and voltage response of a wind-driven fluttering triboelectric nanogenerator. Scientific Reports, 9(1), 5543.

    Google Scholar 

  27. Wang, J., et al. (2018). Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator. ACS Nano, 12(4), 3954–3963.

    Google Scholar 

  28. Wu, Y., Hu, Y., Huang, Z., Lee, C., & Wang, F. (2018). Electret-material enhanced triboelectric energy harvesting from air flow for self-powered wireless temperature sensor network. Sensors and Actuators A: Physical, 271, 364–372.

    Google Scholar 

  29. Huang, L., Xu, W., Bai, G., Wong, M.-C., Yang, Z., & Hao, J. (2016). Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator. Nano Energy, 30, 36–42.

    Google Scholar 

  30. Ahmed, A., Hassan, I., Hedaya, M., Abo El-Yazid, T., Zu, J., & Wang, Z. L. (2017). Farms of triboelectric nanogenerators for harvesting wind energy: A potential approach towards green energy. Nano Energy, 36, 21–29.

    Google Scholar 

  31. Liu, X., Zhao, K., & Yang, Y. (2018). Effective polarization of ferroelectric materials by using a triboelectric nanogenerator to scavenge wind energy. Nano Energy, 53, 622–629.

    Google Scholar 

  32. Rahman, M. T., Salauddin, M., Maharjan, P., Rasel, M. S., Cho, H., & Park, J. Y. (2019). Natural wind-driven ultra-compact and highly efficient hybridized nanogenerator for self-sustained wireless environmental monitoring system. Nano Energy, 57, 256–268.

    Google Scholar 

  33. Feng, Y., Zhang, L., Zheng, Y., Wang, D., Zhou, F., & Liu, W. (2019). Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting. Nano Energy, 55, 260–268.

    Google Scholar 

  34. H. Lin et al (2019). “Angle-shaped triboelectric nanogenerator for harvesting environmental wind energy”. Nano Energy, 56, 269–276.

    Google Scholar 

  35. Ravichandran, A. N., Calmes, C., Serres, J. R., Ramuz, M., & Blayac, S. (2019). Compact and high performance wind actuated venturi triboelectric energy harvester. Nano Energy, 62, 449–457.

    Google Scholar 

  36. M. Xu et al (2017). “An aeroelastic flutter based triboelectric nanogenerator as a self-powered active wind speed sensor in harsh environment”. Extreme Mechanics Letters, 15, 122–129.

    Google Scholar 

  37. Yi, F., et al. (2014). Self-powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor. Advanced Functional Materials, 24(47), 7488–7494.

    Google Scholar 

  38. L. M. Zhang et al (2016). Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy, 22, 87–94.

    Google Scholar 

  39. Chen, B. D., et al. (2018). Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Materials Today, 21(1), 88–97.

    Google Scholar 

  40. S. L. Zhang et al (2018). “Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect”. Nano Energy, 48, 421–429.

    Google Scholar 

  41. Zhang, D., Shi, J., Si, Y., & Li, T. (2019). “Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy. Nano Energy, 61, 132–140.

    Google Scholar 

  42. Bai, Y., et al. (2019). High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping. Nano Energy, 66, 104117.

    Google Scholar 

  43. Cheng, P., et al. (2019). Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy, 57, 432–439.

    Google Scholar 

  44. Zhong, W., Xu, L., Wang, H., Li, D., & Wang, Z. L. (2019). Stacked pendulum-structured triboelectric nanogenerators for effectively harvesting low-frequency water wave energy. Nano Energy, 66, 104108.

    Google Scholar 

  45. Wang, S., et al. (2019). A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring. Nano Energy, 58, 312–321.

    Google Scholar 

  46. Zhou, Q., et al. (2019). High humidity- and contamination-resistant triboelectric nanogenerator with superhydrophobic interface. Nano Energy, 57, 903–910.

    Google Scholar 

  47. Lin, Z., et al. (2020). Rationally designed rotation triboelectric nanogenerators with much extended lifetime and durability. Nano Energy, 68, 104378.

    Google Scholar 

  48. Pei, J., Huang, J., Huang, Z., & Liu, K. (2019). Liquid flow-induced electricity in carbon nanomaterials. Sustainable Energy & Fuels, 3(3), 599–610.

    Google Scholar 

  49. Jiang, P., et al. (2019). Signal output of triboelectric nanogenerator at oil–water–solid multiphase interfaces and its application for dual-signal chemical sensing. Advanced Materials, 31(39), e1902793.

    Google Scholar 

  50. Choi, D., Kim, D. W., Yoo, D., Cha, K. J., La, M., & Kim, D. S. (2017). Spontaneous occurrence of liquid-solid contact electrification in nature: Toward a robust triboelectric nanogenerator inspired by the natural lotus leaf. Nano Energy, 36, 250–259.

    Google Scholar 

  51. Zhang, W., Wang, P., Sun, K., Wang, C., & Diao, D. (2019). Intelligently detecting and identifying liquids leakage combining triboelectric nanogenerator based self-powered sensor with machine learning. Nano Energy, 56, 277–285.

    Google Scholar 

  52. Zhang, X., Zheng, Y., Wang, D., Rahman, Z. U., & Zhou, F. (2016). Liquid–solid contact triboelectrification and its use in self-powered nanosensor for detecting organics in water. Nano Energy, 30, 321–329.

    Google Scholar 

  53. Wu, Y., et al. (2016). A self-powered triboelectric nanosensor for PH detection. Journal of Nanomaterials, 216, 6. ((Art. no. 5121572)).

    Google Scholar 

  54. Tang, W., et al. (2015). Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Advanced Functional Materials, 25(24), 3718–3725.

    Google Scholar 

  55. Seol, M.-L., Jeon, S.-B., Han, J.-W., & Choi, Y.-K. (2017). Ferrofluid-based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy, 31, 233–238.

    Google Scholar 

  56. Lin, Z.-H., Cheng, G., Lin, L., Lee, S., & Wang, Z. L. (2013). Water–solid surface contact electrification and its use for harvesting liquid-wave energy. Angewandte Chemie International Edition, 52(48), 12545–12549.

    Google Scholar 

  57. Li, X., Tao, J., Wang, X., Zhu, J., Pan, C., & Wang, Z. L. (2018). Networks of high performance triboelectric nanogenerators based on liquid–solid interface contact electrification for harvesting low-frequency blue energy. Advanced Energy Materials, 8(21), 1800705.

    Google Scholar 

  58. Cui, X., Zhang, H., Cao, S., Yuan, Z., Ding, J., & Sang, S. (2018). Tube-based triboelectric nanogenerator for self-powered detecting blockage and monitoring air pressure. Nano Energy, 52, 71–77.

    Google Scholar 

  59. Chen, J., et al. (2016). Self-powered triboelectric micro liquid/gas flow sensor for microfluidics. ACS Nano, 10(8), 8104–8112.

    Google Scholar 

  60. Shi, Q., Wang, H., Wu, H., & Lee, C. (2017). Self-powered triboelectric nanogenerator buoy ball for applications ranging from environment monitoring to water wave energy farm. Nano Energy, 40, 203–213.

    Google Scholar 

  61. Lee, J.-W., & Hwang, W. (2018). Theoretical study of micro/nano roughness effect on water-solid triboelectrification with experimental approach. Nano Energy, 52, 315–322.

    Google Scholar 

  62. Yang, X., Chan, S., Wang, L., & Daoud, W. A. (2018). Water tank triboelectric nanogenerator for efficient harvesting of water wave energy over a broad frequency range. Nano Energy, 44, 388–398.

    Google Scholar 

  63. Liu, L., Shi, Q., Ho, J. S., & Lee, C. (2019). Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications. Nano Energy, 66, 104167.

    Google Scholar 

  64. Chen, X., et al. (2019). Transparent and stretchable bimodal triboelectric nanogenerators with hierarchical micro-nanostructures for mechanical and water energy harvesting. Nano Energy, 64, 103904.

    Google Scholar 

  65. D. Yoo et al (2019). Biomimetic anti-reflective triboelectric nanogenerator for concurrent harvesting of solar and raindrop energies. Nano Energy, 57, 424–431.

    Google Scholar 

  66. Zhao, X. J., Kuang, S. Y., Wang, Z. L., & Zhu, G. (2018). Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano, 12(5), 4280–4285.

    Google Scholar 

  67. Dhiman, P., et al. (2011). Harvesting energy from water flow over graphene. Nano Letters, 11(8), 3123–7.

    Google Scholar 

  68. Kil Yun, B., Soo Kim, H., Joon Ko, Y., Murillo, G., & Hoon, J., & Jung (2017). Interdigital electrode based triboelectric nanogenerator for effective energy harvesting from water. Nano Energy, 36, 233–240.

    Google Scholar 

  69. Lin, Z. H., Cheng, G., Lee, S., Pradel, K. C., & Wang, Z. L. (2014). Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Advanced Materials, 26(27), 4690–6.

    Google Scholar 

  70. Park, H.-Y., Kim, H. K., Hwang, Y.-H., & Shin, D.-M. (2018). Water-through triboelectric nanogenerator based on ti-mesh for harvesting liquid flow. Journal of the Korean Physical Society, 72(4), 499–503.

    Google Scholar 

  71. Kwak, S. S., et al. (2016). Triboelectrification-induced large electric power generation from a single moving droplet on graphene/polytetrafluoroethylene. ACS Nano, 10(8), 7297–7302.

    Google Scholar 

  72. Helseth, L. E. (2016). Electrical energy harvesting from water droplets passing a hydrophobic polymer with a metal film on its back side. Journal of Electrostatics, 81, 64–70.

    Google Scholar 

  73. Kim, T., et al. (2016). Design and optimization of rotating triboelectric nanogenerator by water electrification and inertia. Nano Energy, 27, 340–351.

    Google Scholar 

  74. T. Kim et al (2018). Direct-current triboelectric nanogenerator via water electrification and phase control. Nano Energy, 52, 95–104.

    Google Scholar 

  75. Zhang, X., Zheng, Y., Wang, D., & Zhou, F. (2017). Solid-liquid triboelectrification in smart U-tube for multifunctional sensors. Nano Energy, 40, 95–106.

    Google Scholar 

  76. Pan, L., et al. (2018). Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Research, 11(8), 4062–4073.

    Google Scholar 

  77. Choi, D., Lee, S., Park, S. M., Cho, H., Hwang, W., & Kim, D. S. (2015). Energy harvesting model of moving water inside a tubular system and its application of a stick-type compact triboelectric nanogenerator. Nano Research, 8(8), 2481–2491.

    Google Scholar 

  78. J. Xiong et al (2019). Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor. Nano Energy, 61, 584–593.

    Google Scholar 

  79. Tan, J., Duan, J., Zhao, Y., He, B., & Tang, Q. (2018). Generators to harvest ocean wave energy through electrokinetic principle. Nano Energy, 48, 128–133.

    Google Scholar 

  80. Liu, Y., Zheng, Y., Li, T., Wang, D., & Zhou, F. (2019). Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting. Nano Energy, 61, 454–461.

    Google Scholar 

  81. Cho, H., et al. (2019). Toward sustainable output generation of liquid–solid contact triboelectric nanogenerators: The role of hierarchical structures. Nano Energy, 56, 56–64.

    Google Scholar 

  82. Nie, J., Wang, Z., Ren, Z., Li, S., Chen, X., & Lin Wang, Z. (2019). Power generation from the interaction of a liquid droplet and a liquid membrane. Nature Communications, 10(1), 2264.

    Google Scholar 

  83. Nahian, S. A., Cheedarala, R. K., & Ahn, K. K. (2017). A study of sustainable green current generated by the fluid-based triboelectric nanogenerator (FluTENG) with a comparison of contact and sliding mode. Nano Energy, 38, 447–456.

    Google Scholar 

  84. Cheedarala, R. K., Shahriar, M., Ahn, J. H., Hwang, J. Y., & Ahn, K. K. (2019). Harvesting liquid stream energy from unsteady peristaltic flow induced pulsatile Flow-TENG (PF-TENG) using slipping polymeric surface inside elastomeric tubing. Nano Energy, 65, 104017.

    Google Scholar 

  85. Yannan Xie, S. W., Lin, L., Jing, Q., Lin, Z.-H., Niu, S., Wu, Z., & Lin, Z. (2013). Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano, 7(8), 7119–7125.

    Google Scholar 

  86. Su, Y., et al. (2016). Segmented wind energy harvester based on contact-electrification and as a self-powered flow rate sensor. Chemical Physics Letters, 653, 96–100.

    Google Scholar 

  87. Yong, H., Chung, J., Choi, D., Jung, D., Cho, M., & Lee, S. (2016). Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range. Scientific Reports, 6, 33977.

    Google Scholar 

  88. Park, S.-J., et al. (2019). Self-sustainable wind speed sensor system with omni-directional wind based triboelectric generator. Nano Energy, 55, 115–122.

    Google Scholar 

  89. Taghavi, M., Sadeghi, A., Mazzolai, B., Beccai, L., & Mattoli, V. (2014). Triboelectric-based harvesting of gas flow energy and powerless sensing applications. Applied Surface Science, 323, 82–87.

    Google Scholar 

  90. Zhao, Z., et al. (2016). Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano, 10(2), 1780–7.

    Google Scholar 

  91. Lin, Z.-H., et al. (2013). A self-powered triboelectric nanosensor for mercury ion detection. Angewandte Chemie International Edition, 52(19), 5065–5069.

    Google Scholar 

  92. Kim, W., Choi, D., Kwon, J.-Y., & Choi, D. (2018). A self-powered triboelectric microfluidic system for liquid sensing. Journal of Materials Chemistry A, 6(29), 14069–14076.

    Google Scholar 

  93. Wen, Z., et al. (2015). Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy, 16, 38–46.

    Google Scholar 

  94. Liu, Y., et al. (2018). Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano, 12(3), 2893–2899.

    Google Scholar 

  95. Lee, J. H., Kim, S., Kim, T. Y., Khan, U., & Kim, S.-W. (2019). Water droplet-driven triboelectric nanogenerator with superhydrophobic surfaces. Nano Energy, 58, 579–584.

    Google Scholar 

  96. Zhu, G., Chen, J., Zhang, T., Jing, Q., & Wang, Z. L. (2014). Radial-arrayed rotary electrification for high performance triboelectric generator. Nature Communications, 5, 3426.

    Google Scholar 

  97. Yang, W., et al. (2014). 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Advanced Functional Materials, 24(26), 4090–4096.

    Google Scholar 

  98. Diaz, A. F., & Felix-Navarro, R. M. (2004). A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. Journal of Electrostatics, 62(4), 277–290.

    Google Scholar 

  99. Zi, Y., Niu, S., Wang, J., Wen, Z., Tang, W., & Wang, Z. L. (2015). Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nature Communications, 6, 8376.

    Google Scholar 

  100. Li, X., et al. (2020). Long-lifetime triboelectric nanogenerator operated in conjunction modes and low crest factor. Advanced Energy Materials, 10(7), 1903024.

    Google Scholar 

  101. Zhou, L., Liu, D., Wang, J., & Wang, Z. L. (2020). Triboelectric nanogenerators: Fundamental physics and potential applications. Friction, 8(3), 481–506.

    Google Scholar 

  102. Wang, Z. L., & Wang, A. C. (2019). On the origin of contact-electrification. Materials Today, 30, 34–51.

    Google Scholar 

  103. Xu, Y., et al. (2017). A one-dimensional fluidic nanogenerator with a high power conversion efficiency. Angewandte Chemie International Edition in English, 56(42), 12940–12945.

    Google Scholar 

  104. Liang, Q., Yan, X., Liao, X., & Zhang, Y. (2016). Integrated multi-unit transparent triboelectric nanogenerator harvesting rain power for driving electronics. Nano Energy, 25, 18–25.

    Google Scholar 

  105. Jeon, S.-B., Kim, D., Yoon, G.-W., Yoon, J.-B., & Choi, Y.-K. (2015). Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight. Nano Energy, 12, 636–645.

    Google Scholar 

  106. L. Zheng et al (2014). Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy. Nano Energy, 9, 291–300.

    Google Scholar 

  107. Gang, Z.-H. L., Cheng, Z., & Du. (2014). Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. ACS Nano, 8(2), 1932–1939.

    Google Scholar 

  108. H. Phan et al (2017). Aerodynamic and aeroelastic flutters driven triboelectric nanogenerators for harvesting broadband airflow energy. Nano Energy, 33, 476–484.

    Google Scholar 

  109. Ren, X., et al. (2018). Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting. Nano Energy, 50, 562–570.

    Google Scholar 

  110. Jun Chen, J. Y., Li, Z., Fan, X., Zi, Y., Jing, Q., Guo, H., et al. (2015). Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy. ACS Nano, 9(3), 3324–3331.

    Google Scholar 

  111. Khan, U., & Kim, S. W. (2016). Triboelectric nanogenerators for blue energy harvesting. ACS Nano, 10(7), 6429–32.

    Google Scholar 

  112. Wang, Z. L. (2013). Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 7(11), 9533–9557.

    Google Scholar 

  113. Ahmed, A., et al. (2019). Integrated triboelectric nanogenerators in the era of the internet of things. Advanced Science (Weinh), 6(24), 1802230.

    Google Scholar 

  114. Lee, B. Y., Kim, D. H., Park, J., Park, K. I., Lee, K. J., & Jeong, C. K. (2019). Modulation of surface physics and chemistry in triboelectric energy harvesting technologies. Science and Technology of Advanced Materials, 20(1), 758–773.

    Google Scholar 

  115. Kim, D. W., Lee, J. H., Kim, J. K., & Jeong, U. (2020). Material aspects of triboelectric energy generation and sensors. NPG Asia Materials, 12(1), 1–17.

    Google Scholar 

  116. Lee, J. H., Yu, I., Hyun, S., Kim, J. K., & Jeong, U. (2017). Remarkable increase in triboelectrification by enhancing the conformable contact and adhesion energy with a film-covered pillar structure. Nano Energy, 34, 233–241.

    Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT, South Korea (NRF-2020R1A2B5B03001480).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung-Kwan K. Ahn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, QT., Ahn, KK.K. Fluid-Based Triboelectric Nanogenerators: A Review of Current Status and Applications. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 1043–1060 (2021). https://doi.org/10.1007/s40684-020-00255-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00255-x

Keywords

Navigation