Skip to main content

Advertisement

Log in

Necroptotic–Apoptotic Regulation in an Endothelin-1 Model of Cerebral Ischemia

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The primary forms of cell death seen in ischemic stroke are of two major types: a necrotic/necroptotic form, and an apoptotic form that is frequently seen in penumbral regions of injury. Typically apoptotic versus necroptotic programmed cell death is described as competitive in nature, where necroptosis is often described as playing a backup role to apoptosis. In the present study, we examined the relationship between these two forms of cell death in a murine endothelin-1 model of ischemia–reperfusion injury in wildtype and caspase-3 null mice with and without addition of the pharmacologic RIPK1 phosphorylation inhibitor necrostatin-1. Analyses of ischemic brain injury were performed via both cellular and volumetric assessments, electron microscopy, TUNEL staining, activated caspase-3 and caspase-7 staining, as well as CD11b and F4/80 staining. Inhibition of caspase-3 or RIPK1 phosphorylation demonstrates significant neural protective effects which are non-additive and exhibit significant overlap in protected regions. Interestingly, morphologic analysis of the cortex demonstrates reduced apoptosis following RIPK1 inhibition. Consistent with this, RIPK1 inhibition reduces the levels of both caspase-3 and caspase-7 activation. Additionally, this protection appears independent of secondary inflammatory mediators. Together, these observations demonstrate that the necroptotic protein RIPK1 modifies caspase-3/-7 activity, ultimately resulting in decreased neuronal apoptosis. These findings thus modify the traditional exclusionary view of apoptotic/necroptotic signaling, revealing a new form of interaction between these dominant forms of cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albers GW et al (2016) Ischemic core and hypoperfusion volumes predict infarct size in SWIFT PRIME. Ann Neurol 79:76–89

    Article  PubMed  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular biology of the cell, 5th edn. Garland Science, Taylor and Francis Group, New York

    Google Scholar 

  • Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117:145–152

    Article  CAS  PubMed  Google Scholar 

  • An S, Fu L (2018) Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine 36:553–562

    Article  PubMed  PubMed Central  Google Scholar 

  • Bacigaluppi M, Comi G, Hermann DM (2010) Animal models of ischemic stroke. Part two: modeling cerebral ischemia. Open Neurol J 4:34–38

    PubMed  PubMed Central  Google Scholar 

  • Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. In: Stroke, vol 40. United States, pp e331–e339.

  • Cai Z et al (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16:55–65

    Article  CAS  PubMed  Google Scholar 

  • Carmichael ST (2005) Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx 2:396–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhang L, Yu H, Song K, Shi J, Chen L, Cheng J (2018) Necrostatin-1 improves long-term functional recovery through protecting oligodendrocyte precursor cells after transient focal cerebral ischemia in mice. Neuroscience 371:229–241

    Article  CAS  PubMed  Google Scholar 

  • Cheng YD, Al-Khoury L, Zivin JA (2004) Neuroprotection for ischemic stroke: two decades of success and failure. NeuroRx 1:36–45

    Article  PubMed  PubMed Central  Google Scholar 

  • Degterev A et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    Article  CAS  PubMed  Google Scholar 

  • Del Zoppo GJ, Saver JL, Jauch EC, Adams HP Jr (2009) Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/American Stroke Association. Stroke 40:2945–2948

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng X-X, Li S-S, Sun F-Y (2019) Necrostatin-1 prevents necroptosis in brains after ischemic stroke via inhibition of RIPK1-mediated RIPK3/MLKL signaling. Aging Dis 10:807–817

    Article  PubMed  PubMed Central  Google Scholar 

  • Dojo Soeandy C, Salmasi F, Latif M, Elia AJ, Suo NJ, Henderson JT (2019) Endothelin-1-mediated cerebral ischemia in mice: early cellular events and the role of caspase-3. Apoptosis 24:578–595

    Article  CAS  PubMed  Google Scholar 

  • Dulli D, D'Alessio DJ, Palta M, Levine RL, Schutta HS (1998) Differentiation of acute cortical and subcortical ischemic stroke by risk factors and clinical examination findings. Neuroepidemiology 17:80–89

    Article  CAS  PubMed  Google Scholar 

  • Feng S et al (2007) Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 19:2056–2067

    Article  CAS  PubMed  Google Scholar 

  • Ford GA (2008) Clinical pharmacological issues in the development of acute stroke therapies. Br J Pharmacol 153(Suppl 1):S112–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuxe K et al (1992) Involvement of local ischemia in endothelin-1 induced lesions of the neostriatum of the anaesthetized rat. Exp Brain Res 88:131–139

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghanavati S, Lerch JP, Sled JG (2014) Automatic anatomical labeling of the complete cerebral vasculature in mouse models. Neuroimage 95:117–128

    Article  PubMed  Google Scholar 

  • Gilmour G, Iversen SD, O'Neill MF, Bannerman DM (2004) The effects of intracortical endothelin-1 injections on skilled forelimb use: implications for modelling recovery of function after stroke. Behav Brain Res 150:171–183

    Article  CAS  PubMed  Google Scholar 

  • Ginsberg MD (2009) Current status of neuroprotection for cerebral ischemia: synoptic overview. Stroke 40:S111–114

    Article  PubMed  Google Scholar 

  • Greter M, Lelios I, Croxford AL (2015) Microglia versus myeloid cell nomenclature during brain inflammation. Front Immunol 6:249–249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han J, Zhong CQ, Zhang DW (2011) Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol 12:1143–1149

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD (2010) The concept of the penumbra: can it be translated to stroke management? Int J Stroke 5:290–295

    Article  PubMed  Google Scholar 

  • Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, Yuan J (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horie N, Maag AL, Hamilton SA, Shichinohe H, Bliss TM, Steinberg GK (2008) Mouse model of focal cerebral ischemia using endothelin-1. J Neurosci Methods 173:286–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong H-K, Ji K, Min K, Joe E-H (2013) Brain inflammation and microglia: facts and misconceptions. Exp Neurobiol 22:59–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Jun-Long H et al (2018) Necroptosis signaling pathways in stroke: from mechanisms to therapies. Curr Neuropharmacol 16:1327–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruidering M, Evan GI (2000) Caspase-8 in apoptosis: the beginning of "the end"? IUBMB Life 50:85–90

    Article  CAS  PubMed  Google Scholar 

  • Le DA et al (2002) Caspase activation and neuroprotection in caspase-3- deficient mice after in vivo cerebral ischemia and in vitro oxygen glucose deprivation. Proc Natl Acad Sci USA 99:15188–15193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leenen PJ, de Bruijn MF, Voerman JS, Campbell PA, van Ewijk W (1994) Markers of mouse macrophage development detected by monoclonal antibodies. J Immunol Methods 174:5–19

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Devin A, Rodriguez Y, Liu Z-g (1999) Cleavage of the death domain kinase RIP by Caspase-8 prompts TNF-induced apoptosis. Genes Dev 13:2514–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Zhang K, Shen H, Yao X, Sun Q, Chen G (2018) Necroptosis: a novel manner of cell death, associated with stroke (Review). Int J Mol Med 41:624–630

    PubMed  Google Scholar 

  • Macrae IM, Robinson MJ, Graham DI, Reid JL, McCulloch J (1993) Endothelin-1-induced reductions in cerebral blood flow: dose dependency, time course, and neuropathological consequences. J Cereb Blood Flow Metab 13:276–284

    Article  CAS  PubMed  Google Scholar 

  • McCabe C, Gallagher L, Gsell W, Graham D, Dominiczak AF, Macrae IM (2009) Differences in the evolution of the ischemic penumbra in stroke-prone spontaneously hypertensive and Wistar-Kyoto rats. Stroke 40:3864–3868

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng X, Fisher M, Shen Q, Sotak CH, Duong TQ (2004) Characterizing the diffusion/perfusion mismatch in experimental focal cerebral ischemia. Ann Neurol 55:207–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Mócsai A, Kovács L, Gergely P (2014) What is the future of targeted therapy in rheumatology: biologics or small molecules? BMC Med 12:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nair P, Lu M, Petersen S, Ashkenazi A (2014) Chapter five-apoptosis initiation through the cell-extrinsic pathway. In: Ashkenazi A, Yuan J, Wells JA (eds) Methods in enzymology. Academic Press, San Diego, pp 99–128

    Google Scholar 

  • Pan B et al (2014) C-Abl tyrosine kinase mediates neurotoxic prion peptide-induced neuronal apoptosis via regulating mitochondrial homeostasis. Mol Neurobiol 49:1102–1116

    Article  CAS  PubMed  Google Scholar 

  • Pan Y et al (2015) STI571 protects neuronal cells from neurotoxic prion protein fragment-induced apoptosis. Neuropharmacology 93:191–198

    Article  CAS  PubMed  Google Scholar 

  • Prinz M, Priller J, Sisodia SS, Ransohoff RM (2011) Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 14:1227

    Article  CAS  PubMed  Google Scholar 

  • Pulli B et al (2012) Acute ischemic stroke: infarct core estimation on CT angiography source images depends on CT angiography protocol. Radiology 262:593–604

    Article  PubMed  PubMed Central  Google Scholar 

  • Radak D et al (2017) Apoptosis and acute brain ischemia in ischemic stroke. Curr Vasc Pharmacol 15:115–122

    Article  CAS  PubMed  Google Scholar 

  • Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol 14:215–222

    Article  PubMed  Google Scholar 

  • Raghupathi R, Graham DI, McIntosh TK (2000) Apoptosis after traumatic brain injury. J Neurotrauma 17:927–938

    Article  CAS  PubMed  Google Scholar 

  • Roome RB, Bartlett RF, Jeffers M, Xiong J, Corbett D, Vanderluit JL (2014) A reproducible Endothelin-1 model of forelimb motor cortex stroke in the mouse. J Neurosci Methods 233:34–44

    Article  CAS  PubMed  Google Scholar 

  • Sakai R, Henderson JT, O'Bryan JP, Elia AJ, Saxton TM, Pawson T (2000) The mammalian ShcB and ShcC phosphotyrosine docking proteins function in the maturation of sensory and sympathetic neurons. Neuron 28:819–833

    Article  CAS  PubMed  Google Scholar 

  • Sapira V, Cojocaru IM, Lilios G, Grigorian M, Cojocaru M (2010) Study of endothelin-1 in acute ischemic stroke. Roman J Internal Med 48:329–332

    CAS  Google Scholar 

  • Schug ZT, Gonzalvez F, Houtkooper RH, Vaz FM, Gottlieb E (2011) BID is cleaved by caspase-8 within a native complex on the mitochondrial membrane. Cell Death Differ 18:538–548

    Article  CAS  PubMed  Google Scholar 

  • Simonetti G et al (2013) Endovascular management of acute stroke. J Cardiovasc Surg (Torino) 54:101–114

    CAS  Google Scholar 

  • Soylu H, Zhang D, Buist R, Martin M, Albensi BC, Parkinson FE (2012) Intracortical injection of endothelin-1 induces cortical infarcts in mice: effect of neuronal expression of an adenosine transporter. Exp Transl Stroke Med 4:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Xu Y, Geng L (2015) Caspase-3 inhibitor prevents the apoptosis of brain tissue in rats with acute cerebral infarction. Exp Ther Med 10:133–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symon L (1987) Recovery of brain function after ischaemia. Acta Neurochir Suppl (Wien) 41:97–103

    Article  CAS  Google Scholar 

  • Takahashi N et al (2012) Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis 3:e437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tennant KA, Jones TA (2009) Sensorimotor behavioral effects of endothelin-1 induced small cortical infarcts in C57BL/6 mice. J Neurosci Methods 181:18–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanlangenakker N, Vanden Berghe T, Krysko DV, Festjens N, Vandenabeele P (2008) Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med 8:207–220

    Article  CAS  PubMed  Google Scholar 

  • Wang YQ et al (2012) Necrostatin-1 suppresses autophagy and apoptosis in mice traumatic brain injury model. Neurochem Res 37:1849–1858

    Article  CAS  PubMed  Google Scholar 

  • Wiley KE, Davenport AP (2004) Endothelin receptor pharmacology and function in the mouse: comparison with rat and man. J Cardiovasc Pharmacol 44(Suppl 1):S4–6

    Article  CAS  PubMed  Google Scholar 

  • Windle V, Szymanska A, Granter-Button S, White C, Buist R, Peeling J, Corbett D (2006) An analysis of four different methods of producing focal cerebral ischemia with endothelin-1 in the rat. Exp Neurol 201:324–334

    Article  CAS  PubMed  Google Scholar 

  • Woo M et al (1998) Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 12:806–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2004) Global burden of stroke. https://www.who.int/cardiovascular_diseases/en/cvd_atlas_15_burden_stroke.pdf. Accessed 4 May 2016

  • Xu X, Chua KW, Chua CC, Liu CF, Hamdy RC, Chua BH (2010) Synergistic protective effects of humanin and necrostatin-1 on hypoxia and ischemia/reperfusion injury. Brain Res 1355:189–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J (2009) Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis 14:469–477

    Article  PubMed  PubMed Central  Google Scholar 

  • Zgavc T, Ceulemans AG, Hachimi-Idrissi S, Kooijman R, Sarre S, Michotte Y (2012) The neuroprotective effect of post ischemic brief mild hypothermic treatment correlates with apoptosis, but not with gliosis in endothelin-1 treated rats. BMC Neurosci 13:105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Wang Y, Li D, Wu J, Si W, Wu Y (2016) Necrostatin-1 attenuates inflammatory response and improves cognitive function in chronic ischemic stroke mice. Medicines (Basel) 3:16

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Ali Darbandi and William Martin at the Nanoscale Biomedical Imaging Facility at SickKids hospital, Lindsey Fiddes at the University of Toronto for electron microscopy assistance and Lora Stepanian for quantitation assistance.

Funding

This study has been funded by grants awarded to J.T.H. from Natural Sciences and Engineering Research Council of Canada (NSERC) (RGPIN 298553-12) and Heart and Stroke Society of Canada (72043506). C.D.S. additionally received scholarship funding from Natural Sciences and Engineering Research Council of Canada (NSERC) and Queen Elizabeth II Graduate Scholarships in Science & Technology—Merck Company of Canada.

Author information

Authors and Affiliations

Authors

Contributions

CDS designed and performed the majority of experiments, analyzed and interpreted the data, and wrote the manuscript; AJE aided with CD11b and F4/80 staining; YC performed animal care; CR, SH, and ACE aided quantitation and analysis; JTH directed the overall study, designed experiments, interpreted the data, and wrote the manuscript.

Corresponding author

Correspondence to Jeffrey T. Henderson.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical Approval

All animal experimental procedures were performed in accordance with standards outlined by the Local Animal Care Committee and the University of Toronto, following the guidelines set by Ontario's Animal for Research Act and the federal Canadian Council on Animal Care.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dojo Soeandy, C., Elia, A.J., Cao, Y. et al. Necroptotic–Apoptotic Regulation in an Endothelin-1 Model of Cerebral Ischemia. Cell Mol Neurobiol 41, 1727–1742 (2021). https://doi.org/10.1007/s10571-020-00942-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-020-00942-y

Keywords

Navigation