Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-14T05:32:20.551Z Has data issue: false hasContentIssue false

Relating pollen representation to an evolving Amazonian landscape between the last glacial maximum and Late Holocene

Published online by Cambridge University Press:  25 August 2020

Richard J. Smith
Affiliation:
Department of Geography and Environmental Science, School of Archaeology, Geography and Environmental Science (SAGES), University of Reading, Whiteknights, P.O. Box 227, Reading, RG6 6DW, United Kingdom
Francis E. Mayle*
Affiliation:
Department of Geography and Environmental Science, School of Archaeology, Geography and Environmental Science (SAGES), University of Reading, Whiteknights, P.O. Box 227, Reading, RG6 6DW, United Kingdom
S. Yoshi Maezumi
Affiliation:
Institute for Biodiversity & Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
Mitchell J. Power
Affiliation:
Natural History Museum of Utah, Department of Geography, University of Utah, Salt Lake City, 84112, Utah, USA
*
*Corresponding author at: E-mail address: f.mayle@reading.ac.uk (F.E. Mayle).

Abstract

In contrast to temperate regions, relationships between basin characteristics (e.g., type/size) and fossil pollen archives have received little attention in Amazonia. Here, we compare fossil pollen records of a small palm swamp (Cuatro Vientos; CV) and a nearby large lake (Laguna Chaplin, LCH) in Bolivian Amazonia, demonstrating that palm swamps can yield Quaternary pollen archives recording the history of terrestrial vegetation beyond the basin margin, rather than merely a history of localized swamp vegetation dynamics. The pollen assemblages from these two contrasting basins display remarkable agreement throughout their late Quaternary history, indicating past drier climates supported savanna landscape during the last glacial maximum (LGM; 24,000–18,000 cal yr BP) and savanna/semideciduous forest mosaic during the middle Holocene (7000-4750 cal yr BP) at both regional (inferred from LCH) and local (inferred from CV) spatial scales. Additionally, the local-scale catchment of CV and the basin's proximity to the riverine forests of the Río Paraguá enables exploration of the extent of gallery/riverine forests during the LGM and middle Holocene. We show that, between 24,000–4000 cal yr BP, riverine/gallery rainforests were substantially reduced compared with present, challenging the hypothesis that gallery rainforests were important refugia for rainforest species during the drier LGM and middle Holocene.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Absy, M.L., Cleef, A., Fournier, M., Martin, L., Servant, M., Sifeddine, A., Ferreira da Silva, M., et al. , 1991. Mize en évidence de quatre phases d'ouverture de la forêt dense dans le Sud-Est de l‘Amazonie au cours des 60 000 dernières années: première comparaison avec d'autres régions tropicales. [In French.] Comptes rendus de l“Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l”univers, Sciences de la Terre 312, 673678.Google Scholar
Aragão, L.E.O.C., Anderson, L.O., Fonseca, M.G., Rosan, T.M., Vedovato, L.B., Wagner, F.H., Silva, C.V.J., et al. , 2018. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications 9, 112.CrossRefGoogle ScholarPubMed
Aragão, L.E.O.C., Poulter, B., Barlow, J.B., Anderson, L.O., Malhi, Y., Saatchi, S.S., Phillips, O.L., Gloor, E., 2014. Environmental change and the carbon balance of Amazonian forests. Biological Reviews 89, 913931.CrossRefGoogle ScholarPubMed
Baker, P.A., Fritz, S.C., 2015. Nature and causes of Quaternary climate variation of tropical South America. Quaternary Science Reviews 124, 3147.CrossRefGoogle Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., Broda, J.P., 2001. The history of South American tropical precipitation for the past 25,000 years. Science 291, 640643.CrossRefGoogle ScholarPubMed
Barberi, M., Salgado-Labouriau, M.L., Suguio, K., 2000. Paleovegetation and paleoclimate of “Vereda de Águas Emendadas,” central Brazil. Journal of South American Earth Sciences 13, 241254.CrossRefGoogle Scholar
Bartlein, P.J., Harrison, S.P., Brewer, S., Connor, S., Davis, B.A.S., Gajewski, K., Guiot, J., et al. , 2011. Pollen-based continental climate reconstructions at 6 and 21 ka: Aa global synthesis. Climate Dynamics 37, 775802.CrossRefGoogle Scholar
Behling, H., Berrio, J.C., Hooghiemstra, H., 1999. Late Quaternary pollen records from the middle Caquetá river basin in central Colombian Amazon. Palaeogeography, Palaeoclimatology, Palaeoecology 145, 193213.CrossRefGoogle Scholar
Behling, H., Hooghiemstra, H., 1999. Environmental history of the Colombian savannas of the Llanos Orientales since the Last glacial maximum from lake records El Pinal and Carimagua. Journal of Paleolimnology 21, 461476.CrossRefGoogle Scholar
Bennett, K.D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132, 155170.CrossRefGoogle Scholar
Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.CrossRefGoogle Scholar
Bernal, J.P., Cruz, F.W., Stríkis, N.M., Wang, X., Deininger, M., Catunda, M.C.A., Ortega-Obregón, C., Cheng, H., Edwards, R.L., Auler, A.S., 2016. High-resolution Holocene South American monsoon history recorded by a speleothem from Botuverá Cave, Brazil. Earth and Planetary Science Letters 450, 186196.CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.Google Scholar
Blaauw, M., Christen, J.A., Bennett, K.D., Reimer, P.J., 2018. Double the dates and go for Bayes—Impacts of model choice, dating density and quality on chronologies. Quaternary Science Reviews 188, 5866.CrossRefGoogle Scholar
Boisier, J.P., Ciais, P., Ducharne, A., Guimberteau, M., 2015. Projected strengthening of Amazonian dry season by constrained climate model simulations. Nature Climate Change 5, 656660.CrossRefGoogle Scholar
Braconnot, P., Harrison, S.P., Kageyama, M., Bartlein, P.J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., Zhao, Y., 2012. Evaluation of climate models using palaeoclimatic data. Nature Climate Change 2, 417424.CrossRefGoogle Scholar
Bronk Ramsey, C., 1995. Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon 37, 425430.CrossRefGoogle Scholar
Bronk Ramsey, C., 2009. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 10231045.CrossRefGoogle Scholar
Burbridge, R.E., Mayle, F.E., Killeen, T.J., 2004. Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quaternary Research 61, 215230.CrossRefGoogle Scholar
Burn, M.J., Mayle, F.E., 2008. Palynological differentiation between genera of the Moraceae family and implications for Amazonian palaeoecology. Review of Palaeobotany and Palynology 149, 187201.CrossRefGoogle Scholar
Burn, M.J., Mayle, F.E., Killeen, T.J., 2010. Pollen-based differentiation of Amazonian rainforest communities and implications for lowland palaeoecology in tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology 295, 118.CrossRefGoogle Scholar
Bush, M.B., Rivera, R., 2001. Reproductive ecology and pollen representation among neotropical trees. Global Ecology and Biogeography 10, 359367.CrossRefGoogle Scholar
Bush, M.B., Weng, C., 2007. Introducing a new (freeware) tool for palynology. Journal of Biogeography 34, 377380.CrossRefGoogle Scholar
Carson, J.F., Whitney, B.S., Mayle, F.E., Iriarte, J., Prümers, H., Soto, J.D., Watling, J., 2014. Environmental impact of geometric earthwork construction in pre-Columbian Amazonia. Proceedings of the National Academy of Sciences of the United States of America 111, 1049710502.CrossRefGoogle ScholarPubMed
Cheng, H., Sinha, A., Cruz, F.W., Wang, X., Edwards, R.L., d'Horta, F.M., Ribas, C.C., Vuille, M., Stott, L.D., Auler, A.S., 2013. Climate change patterns in Amazonia and biodiversity. Nature Communications 4, 1411.CrossRefGoogle ScholarPubMed
Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., et al. , 2007. Regional climate projections. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp. 847940.Google Scholar
Colinvaux, P.A., Miller, M.C., Liu, K.B., SteinitzKannan, M., Frost, I., 1985. Discovery of Permanent Amazon Lakes and Hydraulic Disturbance in the Upper Amazon Basin. Nature 313, 4245.CrossRefGoogle Scholar
Collinvaux, P.A., De Oliveira, P.E., Moreno Patiño, J.E., 1999. Amazon Pollen Manual and Atlas/Manual e atlas palinologico da Amazônia. Harwood Academic Publishers, Amsterdam.Google Scholar
Costa, L.P., 2003. The historical bridge between the Amazon and the Atlantic Forest of Brazil: A study of molecular phylogeography with small mammals. Journal of Biogeography 30, 7186.CrossRefGoogle Scholar
Cruz, F.W., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., Cardoso, A.O., Ferrari, J.A., Dias, P.L.S., Viana, O., 2005. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434, 6366.CrossRefGoogle ScholarPubMed
Cruz, F.W., Vuille, M., Burns, S.J., Wang, X., Cheng, H., Werner, M., Edwards, R.L., Karmann, I., Auler, A.S., Nguyen, H., 2009. Orbitally driven east-west antiphasing of South American precipitation. Nature Geoscience 2, 210214.CrossRefGoogle Scholar
Davis, B.A.S., Brewer, S., Stevenson, A.C., Guiot, J., 2003. The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews 22, 17011716.CrossRefGoogle Scholar
Davis, M.B., 2000. Palynology after Y2K - Understanding the source area of pollen in sediments. Annual Review of Earth and Planetary Sciences 28, 118.CrossRefGoogle Scholar
Dean, W.E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. Journal of Sedimentary Research 44, 242248.Google Scholar
Doughty, C.E., Metcalfe, D.B., Girardin, C.A.J., Amézquita, F.F., Cabrera, D.G., Huasco, W.H., Silva-Espejo, J.E., et al. , 2015. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 7882.CrossRefGoogle ScholarPubMed
Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. Wiley, Chichester.Google Scholar
Feldpausch, T.R., Phillips, O.L., Brienen, R.J.W., Gloor, E., Lloyd, J., Lopez-Gonzalez, G., Monteagudo-Mendoza, A., et al. , 2016. Amazon forest response to repeated droughts. Biogeosciences 30, 964982.Google Scholar
Fontes, D., Cordeiro, R.C., Martins, G.S., Behling, H., Turcq, B., Sifeddine, A., Seoane, J.C.S., Moreira, L.S., Rodrigues, R.A., 2017. Paleoenvironmental dynamics in South Amazonia, Brazil, during the last 35,000 years inferred from pollen and geochemical records of Lago do Saci. Quaternary Science Reviews 173, 161180.CrossRefGoogle Scholar
Gajewski, K., 2008. The Global Pollen Database in biogeographical and palaeoclimatic studies. Progress in Physical Geography 32, 379402.CrossRefGoogle Scholar
Gosling, W.D., Mayle, F.E., Tate, N.J., Killeen, T.J., 2005. Modern pollen-rain characteristics of tall terra firme moist evergreen forest, southern Amazonia. Quaternary Research 64, 284297.CrossRefGoogle Scholar
Gosling, W.D., Mayle, F.E., Tate, N.J., Killeen, T.J., 2009. Differentiation between Neotropical rainforest, dry forest, and savannah ecosystems by their modern pollen spectra and implications for the fossil pollen record. Review of Palaeobotany and Palynology 153, 7085.CrossRefGoogle Scholar
Grimm, E.C., 1987. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1335.CrossRefGoogle Scholar
Harrison, S.P., Prentice, I.C., 2003. Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Global Change Biology 9, 9831004.CrossRefGoogle Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Röhl, U., 2001. Southward migration of the intertropical convergence zone through the Holocene. Science 293, 13041308.CrossRefGoogle ScholarPubMed
Heiri, O., Lotter, A.F., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, 101110.CrossRefGoogle Scholar
Hermanowski, B., da Costa, M.L., Behling, H., 2012. Environmental changes in southeastern Amazonia during the last 25,000yr revealed from a paleoecological record. Quaternary Research 77, 138148.CrossRefGoogle Scholar
Heyer, J.P., Power, M.J., Field, R.D., van Marle, M.J.E., 2018. The impacts of recent drought on fire, forest loss, and regional smoke emissions in lowland Bolivia. Biogeosciences 15, 43174331.CrossRefGoogle Scholar
Hogg, A.G., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, 18891903.CrossRefGoogle Scholar
Indermühle, A., Stocker, T.F., Joos, F., Fischer, H., Smith, H.J., Wahlen, M., Deck, B., et al. , 1999. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398, 121126.CrossRefGoogle Scholar
Iriarte, J., Smith, R.J., Gregorio de Souza, J., Mayle, F.E., Whitney, B.S., Cárdenas, M.L., Singarayer, J.S., Carson, J.F., Roy, S., Valdes, P., 2017. Out of Amazonia: Late-Holocene climate change and the Tupi–Guarani trans-continental expansion. The Holocene 27, 967975.CrossRefGoogle Scholar
Jacobson, G.L., Bradshaw, R.H.W., 1981. The Selection of sites for paleovegetational studies. Quaternary Research 16, 8096.CrossRefGoogle Scholar
Joetzjer, E., Douville, H., Delire, C., Ciais, P., 2013. Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3. Climate Dynamics 41, 29212936.CrossRefGoogle Scholar
Jones, H.T., Mayle, F.E., Pennington, R.T., Killeen, T.J., 2011. Characterisation of Bolivian savanna ecosystems by their modern pollen rain and implications for fossil pollen records. Review of Palaeobotany and Palynology 164, 223237.CrossRefGoogle Scholar
Juggins, S., 2017. rioja: Analysis of quaternary science data. R package version 0.9-15.1. http://cran.r-project.org/package=rioja.Google Scholar
Kanner, L.C., Burns, S.J., Cheng, H., Edwards, R.L., Vuille, M., 2013. High-resolution variability of the South American summer monsoon over the last seven millennia: insights from a speleothem record from the central Peruvian Andes. Quaternary Science Reviews 75, 110.CrossRefGoogle Scholar
Kelley, D.I., Prentice, I.C., Harrison, S.P., Wang, H., Simard, M., Fisher, J.B., Willis, K.O., 2013. A comprehensive benchmarking system for evaluating global vegetation models. Biogeosciences 10, 33133340.CrossRefGoogle Scholar
Killeen, T.J., Jardim, A., Mamani, F., Rojas, N., 1998. Diversity, composition and structure of a tropical semideciduous forest in the Chiquitanía region of Santa Cruz, Bolivia. Journal of Tropical Ecology 14, 803827.CrossRefGoogle Scholar
Killeen, T.J., Schulenberg, T.S. (Eds.), 1998. A biological assessment of Parque Nacional Noel Kempff Mercado, Bolivia. Rapid Assessment Program Working Papers 10. Conservation International, Washington, D.C.Google Scholar
Killeen, T.J., Siles, T.M., Grimwood, T., Tieszen, L.L., Steininger, M.K., Tucker, C.J., Panfil, S., 2003. Habitat heterogeneity on a forest-savanna ecotone in Noel Kempff Mercado National Park (Santa Cruz, Bolivia): Implications for the long-term conservation of biodiversity in a changing climate. In: Bradshaw, G.A., and Marquet, P.A. (Eds.), How Landscapes Change: Ecological Studies (Analysis and Synthesis), vol. 162. Springer, Berlin, Heidelberg, pp. 285312.CrossRefGoogle Scholar
Kohfeld, K.E., Harrison, S.P., 2000. How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets. Quaternary Science Reviews 19, 321346.CrossRefGoogle Scholar
Latrubesse, E.M., 2012. Amazon Lakes. In: Bengtsson, L., Herschy, R.W., and Fairbridge, R.W. (Eds.) Encyclopedia of Lakes and Reservoirs. Springer, Berlin, pp. 1326.Google Scholar
Ledru, M.-P., Bertaux, J., Sifeddine, A., Suguio, K., 1998. Absence of last glacial maximum records in lowland tropical forests. Quaternary Research 49, 233237.CrossRefGoogle Scholar
Lorente, F.L., Buso Junior, A.A., De Oliveira, P.E., Pessenda, L.C.R., 2017. Atlas Palinológico. Laboratório C14 - CENA/USP. Fundação de Estudos Agrários Luiz de Queiroz (FEALQ), Piracicaba.Google Scholar
Maezumi, S.Y., Alves, D., Robinson, M., de Souza, J.G., Levis, C., Barnett, R.L., Almeida de Oliveira, E., Urrego, D., Schaan, D., Iriarte, J., 2018a. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nature Plants 4, 540547.CrossRefGoogle Scholar
Maezumi, S.Y., Power, M.J., Mayle, F.E., McLauchlan, K.K., Iriarte, J., 2015. Effects of past climate variability on fire and vegetation in the cerrãdo savanna of the Huanchaca Mesetta, NE Bolivia. Climate of the Past 11, 835853.CrossRefGoogle Scholar
Maezumi, S.Y., Whitney, B.S., Mayle, F.E., de Souza, J.G., Iriarte, J., 2018b. Reassessing climate and pre-Columbian drivers of paleofire activity in the Bolivian Amazon. Quaternary International 488, 8194.CrossRefGoogle Scholar
Marchant, R., Cleef, A., Harrison, S.P., Hooghiemstra, H., Markgraf, V., van Boxel, J., Ager, T., et al. , 2009. Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago. Climate of the Past 5, 725767.CrossRefGoogle Scholar
Mayle, F.E., Burbridge, R.E., Killeen, T.J., 2000. Millennial-scale dynamics of southern Amazonian rain forests. Science 290, 22912294.CrossRefGoogle ScholarPubMed
Mayle, F.E., Langstroth, R.P., Fisher, R.A., Meir, P., 2007. Long-term forest-savannah dynamics in the Bolivian Amazon: implications for conservation. Philosophical Transactions of the Royal Society B: Biological Sciences 362, 291307.CrossRefGoogle ScholarPubMed
McCormac, F.G., Hogg, A.G., Blackwell, P.G., Buck, C.E., 2004. SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46, 10871092.CrossRefGoogle Scholar
Meave, J., Kellman, M., 1994. Maintenance of rain-forest diversity in riparian forests of tropical savannas—Implications for species conservation during Pleistocene drought. Journal of Biogeography 21, 121135.CrossRefGoogle Scholar
Meave, J., Kellman, M., MacDougall, A., Rosales, J., 1991. Riparian habitats as tropical forest refugia. Global Ecology and Biogeography Letters 1, 6976.CrossRefGoogle Scholar
Meneses, M.E.N.S., Costa, M.L., Enters, D., Behling, H., 2015. Environmental changes during the last millennium based on multi-proxy palaeoecological records in a savanna-forest mosaic from the northernmost Brazilian Amazon region. Anais da Academia Brasileira de Ciências 87, 16231651.CrossRefGoogle Scholar
Metcalfe, S.E., Whitney, B.S., Fitzpatrick, K.A., Mayle, F.E., Loader, N.J., Street-Perrott, F.A., Mann, D.G., 2014. Hydrology and climatology at Laguna La Gaiba, lowland Bolivia: complex responses to climatic forcings over the last 25 000 years. Journal of Quaternary Science 29, 289300.CrossRefGoogle Scholar
Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J., Stauffer, B., Stocker, T.F., Raynaud, D., Barnola, J.M., 2001. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112114.CrossRefGoogle ScholarPubMed
Ni, J., Yu, G., Harrison, S.P., Prentice, I.C., 2010. Palaeovegetation in China during the late Quaternary: Biome reconstructions based on a global scheme of plant functional types. Palaeogeography, Palaeoclimatology, Palaeoecology 289, 4461.CrossRefGoogle Scholar
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'hara, R.B., Simpson, G.L., et al. , 2018. vegan: Community Ecology Package. R package version 2.4-6. https://CRAN.R-project.org/package=vegan.Google Scholar
Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., et al. , 2011. A large and persistent carbon sink in the world's forests. Science 333, 988993.CrossRefGoogle ScholarPubMed
Pennington, R.T., Prado, D.E., Pendry, C.A., 2000. Neotropical seasonally dry forests and Quaternary vegetation changes. Journal of Biogeography 27, 261273.CrossRefGoogle Scholar
Phillips, O.L., Aragão, L.E.O.C., Lewis, S.L., Fisher, J.B., Lloyd, J., Lopez-Gonzalez, G., Malhi, Y., et al. , 2009. Drought sensitivity of the Amazon rainforest. Science 323, 13441347.CrossRefGoogle ScholarPubMed
Prentice, I.C., Bartlein, P.J., Webb, T., 1993. Vegetation and climate change in eastern North America since the last glacial maximum. Ecology 74, 998998.CrossRefGoogle Scholar
Raia, A., Cavalcanti, I.F.A., 2008. The life cycle of the South American MONSOON SYSTEM. Journal of Climate 21, 62276246.CrossRefGoogle Scholar
Redford, K.H., da Fonseca, G.A.B., 1986. The role of gallery forests in the zoogeography of the cerrado's non-volant mammalian fauna. Biotropica 18, 126.CrossRefGoogle Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., et al. , 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Reis, L.S., Guimarães, J.T.F., Souza-Filho, P.W.M., Sahoo, P.K., de Figueiredo, M.M.J.C., de Souza, E.B., Giannini, T.C., 2017. Environmental and vegetation changes in southeastern Amazonia during the late Pleistocene and Holocene. Quaternary International 449, 83105.CrossRefGoogle Scholar
Roberts, N., Fyfe, R.M., Woodbridge, J., Gaillard, M.J., Davis, B.A.S., Kaplan, J.O., Marquer, L., Mazier, F., Nielsen, A.B., Sugita, S., Trondman, A.-K., Leydet, M., 2018. Europe's lost forests: a pollen-based synthesis for the last 11,000 years. Scientific Reports 8, 18.CrossRefGoogle ScholarPubMed
Rodríguez-Zorro, P.A., 2017. Mid-Holocene vegetation dynamics with an early expansion of Mauritia flexuosa palm trees inferred from the Serra do Tepequém in the savannas of Roraima State in Amazonia, northwestern Brazil. Vegetation History and Archaeobotany 26, 455468.CrossRefGoogle Scholar
Rodríguez-Zorro, P.A., Enters, D., Hermanowski, B., da Costa, M.L., Behling, H., 2015. Vegetation changes and human impact inferred from an oxbow lake in southwestern Amazonia, Brazil since the 19th century. Journal of South American Earth Sciences 62, 186194.CrossRefGoogle Scholar
Roubik, D.W., Moreno Patiño, J.E., 1991. Pollen and spores of Barro Colorado Island. Monographs in Systematic Botany, Vol. 36. Missouri Botanical Garden, St Louis.Google Scholar
Roucoux, K.H., Lawson, I.T., Jones, T.D., Baker, T.R., Coronado, E.N.H., Gosling, W.D., Lähteenoja, O., 2013. Vegetation development in an Amazonian peatland. Palaeogeography, Palaeoclimatology, Palaeoecology 374, 242255.CrossRefGoogle Scholar
Sawada, M., Viau, A.E., Vettoretti, G., Peltier, W.R., Gajewski, K., 2004. Comparison of North-American pollen-based temperature and global lake-status with CCCma AGCM2 output at 6ka. Quaternary Science Reviews 23, 225244.CrossRefGoogle Scholar
Seltzer, G.O., Rodbell, D.T., Baker, P.A., Fritz, S.C., Tapia, P.M., Rowe, H.D., Dunbar, R.B., 2002. Early warming of tropical South America at the last glacial-interglacial transition. Science 296, 16851686.CrossRefGoogle ScholarPubMed
Sifeddine, A., Martin, L., Turcq, B., Volkmer-Ribeiro, C., Soubiès, F., Cordeiro, R.C., Suguio, K., 2001. Variations of the Amazonian rainforest environment: A sedimentological record covering 30,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 168, 221235.CrossRefGoogle Scholar
Silva, L., Sternberg, L., Haridasan, M., 2008. Expansion of gallery forests into central Brazilian savannas. Global Change Biology 14, 21082118.CrossRefGoogle Scholar
Silva, V.B.S., Kousky, V.E., 2012. The South American monsoon system: Climatology and VARIABILITY. In: Wang, S., Gillies, R.R. (Eds.), Modern Climatology. IntechOpen, London, pp. 123152.Google Scholar
Smith, R.J., Mayle, F.E., 2018. Impact of mid- to late Holocene precipitation changes on vegetation across lowland tropical South America: a paleo-data synthesis. Quaternary Research 89, 134155.CrossRefGoogle Scholar
Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615621.Google Scholar
Stute, M., Forster, M., Frischkorn, H., Serejo, A., Clark, J.F., Schlosser, P., Broecker, W.S., Bonani, G., 1995. Cooling of tropical Brazil (5°C) during the last glacial maximum. Science 269, 379383.CrossRefGoogle Scholar
Sugita, S., 1994. Pollen representation of vegetation in Quaternary sediments—theory and method in patchy vegetation. Journal of Ecology 82, 881897.CrossRefGoogle Scholar
Sugita, S., 2007a. Theory of quantitative reconstruction of vegetation I: Pollen from large sites REVEALS regional vegetation composition. The Holocene 17, 229241.CrossRefGoogle Scholar
Sugita, S., 2007b. Theory of quantitative reconstruction of vegetation II: All you need is LOVE. The Holocene 17, 243257.CrossRefGoogle Scholar
Sugita, S., Gaillard, M.J., Broström, A., 1999. Landscape openness and pollen records: A simulation approach. The Holocene 9, 409421.CrossRefGoogle Scholar
Thompson, L.G., Davis, M., Mosley-Thompson, E., Sowers, T., Henderson, K., Zagorodnov, V.S., Lin, P., et al. , 1998. A 25,000-year tropical climate history from Bolivian ice cores. Science 282, 18581864.CrossRefGoogle ScholarPubMed
Tian, F., Cao, X., Dallmeyer, A., Zhao, Y., Ni, J., Herzschuh, U., 2017. Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia. Quaternary Science Reviews 156, 111.CrossRefGoogle Scholar
Toivonen, T., Mäki, S., Kalliola, R., 2007. The riverscape of Western Amazonia—A quantitative approach to the fluvial biogeography of the region. Journal of Biogeography 34, 13741387.CrossRefGoogle Scholar
Twiddle, C.L., Bunting, M.J., 2010. Experimental investigations into the preservation of pollen grains: A pilot study of four pollen types. Review of Palaeobotany and Palynology 162, 621630.CrossRefGoogle Scholar
van Breukelen, M.R., Vonhof, H.B., Hellstrom, J.C., Wester, W.C.G., Kroon, D., 2008. Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth and Planetary Science Letters 275, 5460.CrossRefGoogle Scholar
Viau, A.E., Gajewski, K., Sawada, M.C., Fines, P., 2006. Millennial-scale temperature variations in North America during the Holocene. Journal of Geophysical Research 111, 483–12.CrossRefGoogle Scholar
Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Ito, E., Wang, Y., Kong, X., Solheid, M., 2007. Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophysical Research Letters 34, L23701, doi:10.1029/2007GL031149.CrossRefGoogle Scholar
Whitney, B.S., Mayle, F.E., 2012. Pediastrum species as potential indicators of lake-level change in tropical South America. Journal of Paleolimnology 47, 601615.CrossRefGoogle Scholar
Whitney, B.S., Mayle, F.E., Punyasena, S.W., Fitzpatrick, K.A., Burn, M.J., Guillen, R., Chavez, E., Mann, D., Pennington, R.T., Metcalfe, S.E., 2011. A 45 kyr palaeoclimate record from the lowland interior of tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology 307, 177192.CrossRefGoogle Scholar
Wright, H.E., 1967. A square-rod piston sampler for lake sediments. Journal of Sedimentary Research 37, 975976.CrossRefGoogle Scholar
Wu, H., Guiot, J., Brewer, S., Guo, Z., 2007. Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: Reconstruction from pollen data using inverse vegetation modelling. Climate Dynamics 29, 211229.CrossRefGoogle Scholar
Zhou, J., Lau, K.M., 1998. Does a monsoon climate exist over South America? Journal of Climate 11, 10201040.2.0.CO;2>CrossRefGoogle Scholar