Skip to main content
Log in

Evolution of the Energy and Angular Distributions of Emitted Atoms with a Variation in the Atomic Number of the Target Substance

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The emission of atoms from the (001) faces of a series of real and model single crystals is studied using computer simulation by means of the molecular-dynamics method. The evolution of the energy distributions of atoms sputtered from surfaces with polar and azimuthal-angle resolution is studied in the case of a variation in the atomic number of the target substance. For low energies, the maximum of overfocused sputtered atoms is more sensitive to a variation in the atomic number of the material substance than that of focused atoms. The evolution of polar-angle distributions of atoms sputtered from surfaces with energy and azimuthal-angle resolution is also studied in the case of a variation in the atomic number of the target substance. The maxima of the focused and overfocused sputtered atoms are very sensitive to a variation in the atomic number of the target substance. The observed shifts of the maxima are related to enhancement of the blocking effect as the atomic number of the target substance increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. M. Borisov and E. S. Mashkova, Physical Foundations of Ion Beam Technologies. II. Solid Surface Sputtering (MAKS Press, Moscow 2013) [in Russian].

    Google Scholar 

  2. V. S. Chernysh, A. S. Patrakeev, and V. I. Shulga, Radiat. Eff. Defects Solids 163 (7), 597 (2008). https://doi.org/10.1080/10420150701640082

    Article  CAS  Google Scholar 

  3. V. S. Chernysh, A. S. Patrakeev, S. S. Elovikov, and V. I. Shul’ga, J Surf. Invest.: X-Ray Synchrotron Neutron Tech. 2 (1), 86 (2008).

    Google Scholar 

  4. V. I. Shulga, Nucl. Instrum. Methods Phys. Res., Sect. B 266 (24), 5107. https://doi.org/10.1016/j.nimb.2008.10.001

  5. V. I. Shulga, Nucl. Instrum. Methods Phys. Res., Sect. B 267 (21–22), 3524. https://doi.org/10.1016/j.nimb.2009.08.023

  6. V. S. Chernysh and A. S. Patrakeev, Nucl. Instrum. Methods Phys. Res., Sect. B 270, 50 (2012). https://doi.org/10.1016/j.nimb.2011.09.015

    Article  CAS  Google Scholar 

  7. V. E. Yurasova, S. S. Elovikov, and E. Yu. Zykova, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 6, 38 (2007).

  8. S. S. Elovikov, E. Yu. Zykova, A. S. Mosunov, et al., Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 2, 70 (2007).

    Google Scholar 

  9. S. S. Elovikov, E. Yu. Zykova, and V. E. Yurasova, Bull. Russ. Acad. Sci.: Phys. 74, 130 (2010).

    Article  Google Scholar 

  10. A. A. Ermolenko and G. V. Kornich, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 6, 222 (2012).

    Article  Google Scholar 

  11. D. V. Shyrokorad and G. V. Kornich, Phys. Solid State 56, 2568 (2014).

    Article  CAS  Google Scholar 

  12. D. V. Shirokorad, G. V. Kornich and S. G. Buga, Phys. Solid State 58, 387 (2016).

    Article  CAS  Google Scholar 

  13. A. I. Tolmachev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5, 288 (2011).

    Article  CAS  Google Scholar 

  14. A. I. Tolmachev and L. Forlano, Tech. Phys. 63, 1455 (2018). https://doi.org/10.1134/S1063784218100225

    Article  CAS  Google Scholar 

  15. V. I. Bachurin, A. M. Nikitin, V. N. Samoilov, et al., Izv. Akad. Nauk, Ser. Fiz. 58 (3), 102 (1994).

    CAS  Google Scholar 

  16. V. N. Samoilov, O. S. Korsakova, and A. E. Tatur, Izv. Akad. Nauk, Ser. Fiz. 60 (7), 100 (1996).

    CAS  Google Scholar 

  17. V. N. Samoilov, A. E. Tatur, and V. I. Yastrzhembsky, Nucl. Instrum. Methods Phys. Res., Sect. B 118 (1–4), 509 (1996). https://doi.org/10.1016/0168-583X(95)01479-9

    Article  CAS  Google Scholar 

  18. V. N. Samoilov, O. S. Korsakova, and A. E. Tatur, Vacuum 47 (12), 1443 (1996). https://doi.org/10.1016/S0042-207X(96)00209-6

    Article  Google Scholar 

  19. O. S. Korsakova, V. N. Samoilov, K. V. Dekhtyar, and I. B. Gurko, in Proc. 7th European Conf. on Applications of Surface and Interface Analysis (Göteborg, Sweden, June 16–20,1997) (Wiley and Sons, Chichester, 1997), p. 860.

  20. V. N. Samoilov, A. E. Tatur, and V. I. Yastrzhembsky, Radiat. Eff. Defects Solids 142 (1–4), 323 (1997). https://doi.org/10.1080/10420159708211617

    Article  Google Scholar 

  21. V. N. Samoilov and N. G. Ananieva, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 13, 780 (2019). https://doi.org/10.1134/S1027451019040323

    Article  CAS  Google Scholar 

  22. G. K. Wehner, J. Appl. Phys. 26 (8), 1056 (1955). https://doi.org/10.1063/1.1722136

    Article  CAS  Google Scholar 

  23. V. E. Yurasova, N. V. Pleshivtsev, and I. V. Orfanov, Sov. Phys. JETP 10, 689 (1959).

    Google Scholar 

  24. D. Rübesame and H. Niedrig, Radiat. Eff. Defects Solids 138 (1–2), 49 (1996). https://doi.org/10.1080/10420159608211508

    Article  Google Scholar 

  25. O. S. Korsakova, V. A. Aleshkevich, V. N. Samoilov, and A. M. Nikitin, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled, No. 2, 77 (1997).

    Google Scholar 

  26. V. N. Samoilov, O. S. Korsakova, and V. A. Elesin, Bull. Russ. Acad. Sci.: Phys. 64 (4), 661 (2000).

    Google Scholar 

  27. V. I. Shpinkov and V. N. Samoilov, J. Surf. Invest.: X‑Ray, Synchrotron Neutron Tech. 3, 229 (2009).

    Article  Google Scholar 

  28. N. Yu. Tulyakov, F. L. Levkovich-Maslyuk, and V. N. Samoilov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 5, 335 (2011).

    Article  CAS  Google Scholar 

  29. V. N. Samoilov and N. V. Nosov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8 (2), 276 (2014). https://doi.org/10.1134/S1027451014020207

    Article  CAS  Google Scholar 

  30. V. N. Samoilov, A. I. Musin, and N. G. Ananieva, Bull. Russ. Acad. Sci.: Phys. 80 (2), 109 (2016). https://doi.org/10.3103/S106287381602026X

    Article  CAS  Google Scholar 

  31. V. N. Samoilov and A. I. Musin, Bull. Russ. Acad. Sci.: Phys. 82, 150 (2018). https://doi.org/10.3103/S1062873818020223

    Article  CAS  Google Scholar 

  32. V. N. Samoilov, A. E. Tatur, N. A. Kovaleva, and A. E. Kozhanov, Nucl. Instrum. Methods Phys. Res., Sect. B 153 (1–4), 319 (1999). https://doi.org/10.1016/S0168-583X(99)00216-5

    Article  CAS  Google Scholar 

  33. V. N. Samoilov, O. S. Korsakova, E. L. Rodionova, et al., in Proceedings of the 9th International Conference on Ion Beam Modification of Materials, Canberra, Australia, Ed. by J. S. Williams et al. (Elsevier Science, Amsterdam, 1996), p. 710.

  34. G. J. Williams and B. V. King, Nucl. Instrum. Methods Phys. Res., Sect. B 153 (1–4), 314 (1999). https://doi.org/10.1016/S0168-583X(98)01009-X

    Article  CAS  Google Scholar 

  35. V. I. Shulga, Radiation Effects. 51 (1–2), 1 (1980). https://doi.org/10.1080/00337578008209262

    Article  CAS  Google Scholar 

  36. M. W. Thompson, Philos. Mag. 18 (152), 377 (1968). https://doi.org/10.1080/14786436808227358

    Article  CAS  Google Scholar 

  37. P. Sigmund, Phys. Rev. 184 (2), 383 (1969). https://doi.org/10.1103/PhysRev.184.383

    Article  CAS  Google Scholar 

  38. M. H. Shapiro, Nucl. Instrum. Methods Phys. Res., Sect. B 42 (2), 290 (1989). https://doi.org/10.1016/0168-583X(89)90722-2

    Article  Google Scholar 

  39. I. R. Chakarov, V. T. Cherepin, D. S. Karpuzov, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 39 (1–4), 81 (1989). https://doi.org/10.1016/0168-583X(89)90745-3

    Article  Google Scholar 

  40. Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev et al., Otkrytye Sistemy, No. 7, 36 (2012).

  41. V. Sadovnichy, A. Tikhonravov, Vl. Voevodin, and V. Opanasenko, Contemporary High Performance Computing: From Petascale Toward Exascale (CRC Press, Boca Raton, FL, 2013), p. 283.

    Google Scholar 

  42. V. N. Samoilov and K. V. Dekhtyar, Bull. Russ. Acad. Sci.: Phys. 65 (9), 1433 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Samoilov.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilov, V.N., Musin, A.I. Evolution of the Energy and Angular Distributions of Emitted Atoms with a Variation in the Atomic Number of the Target Substance. J. Surf. Investig. 14, 743–750 (2020). https://doi.org/10.1134/S1027451020040151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020040151

Keywords:

Navigation