Skip to main content
Log in

The Structure of Bismuth-Ferrite Hybrid Materials Obtained via Transient Electrolysis

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Transient electrolysis based on polarization with alternating asymmetric current of industrial frequency is used in this work to obtain bismuth-ferrite hybrid materials on a support from aqueous solutions of electrolytes. X-ray phase analysis showed that the materials formed on the surface of the steel are multiphase systems. The influence of the heat-treatment temperature on the elemental and phase composition and the surface morphology of the hybrid materials is studied. The charge state of bismuth and iron in the surface layers and over the depth of ion etching of the hybrid material is studied with X-ray photoelectron spectroscopy, and layer-by-layer deposition of the components of the hybrid material is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. T. Yoshioka, A. Chavez-Valdez, J. A. Rocther, et al., J. Colloid Interface Sci. 392, 167 (2013). https://doi.org/10.1016/j.jcis.2012.09.087

    Article  CAS  Google Scholar 

  2. V. A. Anikin, A. M. Borisov, V. G. Vostrikov, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 9 (2), 221 (2015). https://doi.org/10.1134/S1027451015020044

    Article  CAS  Google Scholar 

  3. I. I. Makoed and A. F. Revinskii. Vestn. BarGU. Ser.: Fiz.-Mat. Nauki, Tekhn. Nauki, No. 1, 21 (2013).

    Google Scholar 

  4. A. A. Zatyupo, L. A. Bashkirov, and T. A. Shichkova, Khim. Tekhnol. Neorgan. Veshchestv, No. 3, 44 (2014).

    Google Scholar 

  5. Kh. A. Sadykov, I. A. Verbenko, and L. A. Reznichenko, Konstr. Kompoz. Mater., No. 2, 50 (2013).

  6. M. Singh, Y. Yang, C. G. Takoudis, et al., Electrochem. Solid-State Lett. 12 (5), 161 (2009). https://doi.org/10.1149/1.3080612

    Article  CAS  Google Scholar 

  7. A. G. Abubakarov, L. A. Shilkina, I. A. Verbenko, et al., Bull. Russ. Acad. Sci.: Phys. 78, 713 (2014).

    Article  CAS  Google Scholar 

  8. T. T. Carvalho and P. B. Tavares, Mater. Lett. 62, 3984 (2008). https://doi.org/10.1016/j.matlet.2008.05.051

    Article  CAS  Google Scholar 

  9. M. I. Morozov, N. A. Lomanova, and V. V. Gusarov, Russ. J. Gen. Chem. 73, 1676 (2003).

    Article  CAS  Google Scholar 

  10. Y. Shirahata and T. Oku, Coatings 6 (68), 9 (2016). https://doi.org/10.3390/coatings6040068

    Article  CAS  Google Scholar 

  11. S. Iakovlev, C. -H. Solterbeck, M. Kuhnke, et al., J. Appl. Phys. 97, 6 (2005). https://doi.org/10.1063/1.1881776

    Article  CAS  Google Scholar 

  12. Z. N. Kayani, S. Riaz, and S. Naseem, Sci. Int. (Lahore, Pak.) 23 (4), 255 (2011).

  13. A. B. Kilimnik and E. E. Degtyareva, Vestn. TGTU, 12 (1), 92 (2006).

    CAS  Google Scholar 

  14. Zh. I. Bespalova and A. V. Khramenkova, Nanosyst.: Phys., Chem., Math. 7 (3), 433 (2016). https://doi.org/10.17586/2220-8054-2016-7-3-433-450

    Article  CAS  Google Scholar 

  15. S. A. Sadykov, D. K. Palchaev, and Zh. Kh. Murlieva, Phys. Solid State 58, 959 (2016).

    Article  CAS  Google Scholar 

  16. T. Ahmed, A. Vorobiev, and S. Gevorgian, Thin Solid Films 520 (13), 4470 (2012). https://doi.org/10.1016/j.tsf.2012.02.082

    Article  CAS  Google Scholar 

  17. V. M. Denisov, N. V. Belousova, V. P. Zhereb, et al., J. Sib. Fed. Univ., Chem., No. 5, 146 (2012).

  18. J. Lu, L. J. Qiao, P. Z. Fu, et al., J. Cryst. Growth 318 (1), 936 (2011). https://doi.org/10.1016/j.jcrysgro.2010.10.181

    Article  CAS  Google Scholar 

  19. I. V. Lisnevskaya and A. V. Petrova, Inorg. Mater. 45, 930 (2009).

    Article  CAS  Google Scholar 

  20. Y. T. Prabhu, K. V. Rao, B. S. Kumari, et al., Int. Nano Lett. 5, 85 (2015). https://doi.org/10.1007/s40089-015-0141-z

    Article  CAS  Google Scholar 

  21. N. Adachi, V. P. Denysenkov, S. I. Khartsev, et al., J. Appl. Phys. 88 (5), 2734 (2000). https://doi.org/10.1063/1.1287227

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Khramenkova.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khramenkova, A.V., Ariskina, D.N., Izvarin, A.I. et al. The Structure of Bismuth-Ferrite Hybrid Materials Obtained via Transient Electrolysis. J. Surf. Investig. 14, 673–678 (2020). https://doi.org/10.1134/S1027451020040114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020040114

Keywords:

Navigation