Skip to main content
Log in

Group algebras acting on the space of solutions of a special double confluent Heun equation

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study properties of the space \(\boldsymbol{\Omega}\) of solutions of a special double confluent Heun equation closely related to the model of a overdamped Josephson junction. We describe operators acting on \(\boldsymbol{\Omega}\) and relations in the algebra \(\mathcal{A}\) generated by them over the real number field. The structure of \(\mathcal{A}\) depends on parameters. We give conditions under which \(\mathcal{A}\) is isomorphic to a group algebra and describe two corresponding group structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. Yu. Slavyanov and W. Lay, it Special Functions: A Unified Theory Based on Singularities, Oxford Univ. Press, Oxford (2000).

    MATH  Google Scholar 

  2. D. Schmidt and G. Wolf, “Double confluent Heun equation,” it Heun’s Differential Equations (A. Ronveaux, ed.), Oxford Univ. Press, Oxford (1995), pp. 129–188.

    Google Scholar 

  3. M. Hortaçsu, “Heun functions and some of their applications in physics,” Adv. High Energy Phys., 2018, 8621573 (2018); arXiv:1101.0471v11 [math-ph] (2011).

    Article  MathSciNet  Google Scholar 

  4. The Heun Project, it Heun Functions, Their Generalizations and Applications, Website http://theheunproject.org/bibliography.html (2019).

    Google Scholar 

  5. V. M. Buchstaber and S. I. Tertychnyi, “Automorphisms of the solution spaces of special double-confluent Heun equations,” Funct. Anal. Appl., 50, 176–192 (2016).

    Article  MathSciNet  Google Scholar 

  6. S. I. Tertychnyi, “Solution space monodromy of a special double confluent Heun equation and its applications,” Theor. Math. Phys., 201, 1426–1441 (2019).

    Article  MathSciNet  Google Scholar 

  7. T. Panov and Ya. Veryovkin, “On the commutator subgroup of a right-angled Artin group,” J. Algebra, 521, 284–298 (2019).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research was supported in part by the Russian Foundation for Basic Research (Grant No. 17-01-00192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Tertychnyi.

Ethics declarations

The authors declare no conflicts of interest.

A. Necessary information about $$\mathfrak{pqrs}$$ polynomials

We consider sequences \(\{p_k\}\), \(\{q_k\}\), \(\{r_k\}\), and \(\{s_k\}\), \(k=0,1,2,\dots\), of functions of the complex variable \(z\) defined by the recursive scheme

$$\begin{aligned} \, &p_0=0,\qquad q_0=1,\qquad r_0=z^{-2},\qquad s_0=-\mu, \end{aligned}$$
(49)
$$ \begin{aligned} \, &p_k=(1-\ell)z\,p_{k-1}+q_{k-1}+z^2p_{k-1}', \\[1mm] &q_k=z^2 (-\lambda+(\ell+1)\mu z)p_{k-1}+\mu(1- z^2)q_{k-1}+z^2q_{k-1}', \\[1mm] &r_k=2(k-2)z\,r_{k-1}-s_{k-1}-z^2r_{k-1}', \\[1mm] &s_k=z^2(\lambda-(\ell+1)\mu z)r_{k-1}+ ((2k-\ell-3)z+\mu(z^2-1))s_{k-1}-z^2s_{k-1}'. \end{aligned}$$
(50)
Although the function \(r_0\) is singular at zero, all four functions \(p_1\), \(q_1\), \(r_1\), and \(s_1\) are already polynomials for \(k=1\). This easily implies that for any \(k>1\), the result is also four polynomials and, moreover, depends not only on \(z\) but also on the constant parameters \(\lambda \) and \(\mu\) (and also on \(\ell\)).

Here, we need only one set of four polynomials (representatives of the sequences defined above), namely, the functions with the index \(k=\ell\). For them, we introduce the notation

$$\mathfrak{p}=p_{\ell},\qquad\mathfrak{q}=q_{\ell},\qquad\mathfrak{r}=r_{\ell},\qquad\mathfrak{s}=s_{\ell},$$
and they are polynomials in \(z\) of the respective degrees \(2\ell-2\), \(2\ell\), \(2\ell-2\), and \(2\ell\). They also depend polynomially on the parameters \(\lambda \) and \(\mu\) (see [5]).

For the first few values of \(\ell\), the \(\mathfrak{pqrs}\) polynomials have the forms

$$\begin{aligned} \, \ell=1\colon\quad\mathfrak{p}={}&1,\qquad\mathfrak{q}=-\mu(z^2-1),\qquad \mathfrak{r}=\mu,\qquad\mathfrak{s}=\lambda-\mu^2(z^2-1), \\[1mm] \ell=2\colon\quad\mathfrak{p}={}&-\mu(z^2-1)-z,\qquad \mathfrak{q}=(-\lambda+\mu z)z^2+\mu^2(z^2-1)^2, \\[1mm] \mathfrak{r}={}&-\lambda+\mu^2(z^2-1), \\[1mm] \mathfrak{s}={}&\lambda(-z+\mu(2z^2-1))-\mu^2(z+\mu(z^2-1)^2), \\[1mm] \ell=3\colon\quad\mathfrak{p}={}&(1-\lambda)z^2+(\mu(z^2-1)+z)^2, \\[1mm] \mathfrak{q}={}&-\mu(2z^4+(\mu^2(z^2-1)^2+2(\mu z-\lambda)z^2)(z^2-1)), \\[1mm] \mathfrak{r}={}&\mu(\mu^2(z^2-1)^2-\lambda(2z^2-1)), \\[1mm] \mathfrak{s}={}&-\lambda^2z^2+\mu^2\bigl(2z^2-\mu(z^2-1)(2z+\mu(z^2-1)^2)\bigr)+{} \\[1mm] &{}+\lambda\bigl(2z^2+\mu(z^2-1)(-2z+\mu(3z^2-1))\bigr), \\[1mm] \ell=4\colon\quad\mathfrak{p}={}&2(\lambda-3)z^3+2(\lambda-3)\mu z^2(z^2-1)- 3\mu^2z(z^2-1)^2-\mu^3(z^2-1)^3, \\[1mm] \mathfrak{q}={}&(\lambda-3)\lambda z^4-2(\lambda-3)\mu z^5+3\mu^3z^3(z^2-1)^2+{} \\[1mm] &{}+\mu^4(z^2-1)^4-3\mu^2z^2\bigl((3z^2-2z^4+\lambda(z^2-1)^2\bigr), \\[1mm] \mathfrak{r}={}&\lambda^2z^2-3\mu^2z^2+\mu^4(z^2-1)^3- \lambda\bigl(3 z^2+\mu^2(1-4z^2+3z^4)\bigr), \\[1mm] \mathfrak{s}={}&-\bigl(\lambda^2 z^2 (-2 z+\mu (3 z^2-2))+{} \\[1mm] &{}+\mu^2(6z^3+3\mu^2z(z^2-1)^2+\mu^3(z^2-1)^4+\mu(6z^2-9z^4))+{} \\[1mm] &{}+\lambda(6z^3-\mu^3(z^2-1)^2(4 z^2-1)+ \mu(6z^2-9z^4)+\mu^2z(3-8z^2+3z^4))\bigr). \end{aligned}$$

The \(\mathfrak{pqrs}\) polynomials satisfy the system of linear differential equations

$$\begin{aligned} \, &z^2\mathfrak{p}'=(\mu+(\ell-1)z)\mathfrak{p}-\mathfrak{q}+(-1)^\ell z^2\mathfrak{r}, \\[1mm] &\mathfrak{q}'=(\lambda-(\ell+1)\mu z)\mathfrak{p}+\mu\,\mathfrak{q}+(-1)^\ell\mathfrak{s}, \\[1mm] &z^2\mathfrak{r}'=(-1)^{\ell+1}(\lambda+\mu^2)\mathfrak{p}+z(2 (\ell-1)-\mu z)\mathfrak{r}-\mathfrak{s}, \\[1mm] &z^2\mathfrak{s}'=(-1)^{\ell+1}(\lambda+\mu^2)\mathfrak{q}+ z^2(\lambda-(\ell+1)\mu z)\mathfrak{r}+((\ell-1)z-\mu)\mathfrak{s}. \end{aligned} $$
(51)
It follows from them that the expression
$$\mathcal{D}_\ell=z^{2(1-l)}\bigl(\mathfrak{p}(z)\mathfrak{s}(z)-\mathfrak{q}(z)\mathfrak{r}(z)\bigr) $$
(52)
is independent of \(z\). Indeed, calculating its derivative and eliminating derivatives of the \(\mathfrak{pqrs}\) polynomials using the equations given above, we obtain an expression that vanishes as a result of identical algebraic transformations. In other words, \(\mathcal{D}_\ell\) is a first integral of Eqs. (51). It is easy to see that \(\mathcal{D}_\ell\) is a polynomial in \(\lambda\) and \(\mu\).

As a consequence of the \(z\)-independence, we can calculate the value of \(\mathcal{D}_\ell\) for any value of this variable except zero. In particular,

$$\mathcal{D}_\ell=\mathfrak{p}(1)\mathfrak{s}(1)-\mathfrak{q}(1)\mathfrak{s}(1).$$
We now note that as shown in [5], the \(\mathfrak{pqrs}\) polynomials satisfy the functional equations
$$\begin{aligned} \, &\mathfrak{p}(-z^{-1})=(-1)^{\ell+1}z^{-2(\ell-1)}\mathfrak{p}(z), \\[1mm] &\mathfrak{q}(-z^{-1})=z^{-2\ell}[(-1)^\ell\mu\,\mathfrak{p}(z)+z^2\mathfrak{r}(z)], \\[1mm] &\mathfrak{r}(-z^{-1})=z^{-2(\ell-1)}[\mu z^2\mathfrak{p}(z)+\mathfrak{q}(z)], \\[1mm] &\mathfrak{s}(-z^{-1})=-z^{-2\ell}[\mu(\mu z^2\mathfrak{p}(z)+\mathfrak{q}(z))+ (-1)^\ell z^2(\mu z^2\mathfrak{r}(z)+\mathfrak{s}(z))], \end{aligned}$$
(53)
$$ \begin{aligned} \, &\mathfrak{p}(-z)=(-1)^{\ell+1}(\lambda+\mu^2)^{-1}(\mu z^2\mathfrak{r}(z)+\mathfrak{s}(z)), \\[1mm] &\mathfrak{q}(-z)=\mu z^2\mathfrak{p}(z)+\mathfrak{q}(z)+(-1)^\ell (\lambda+\mu^2)^{-1}\mu z^2(\mu z^2\mathfrak{r}(z)+\mathfrak{s}(z)), \\[1mm] &\mathfrak{r}(-z)=\mathfrak{r}(z), \\[1mm] &\mathfrak{s}(-z)=(-1)^{\ell+1}(\lambda+\mu^2)\mathfrak{p}(z)-\mu z^2\mathfrak{r}(z), \end{aligned}$$
(54)
$$ \begin{aligned} \, &\mathfrak{p}(z^{-1})=(\lambda+\mu^2)^{-1}z^{-2(\ell-1)}[\mu z^2\mathfrak{r}(z)+\mathfrak{s}(z)], \\[1mm] &\mathfrak{q}(z^{-1})=(\lambda+\mu^2)^{-1}z^{-2\ell}[\lambda z^2\mathfrak{r}(z)-\mu\,\mathfrak{s}(z)], \\[1mm] &\mathfrak{r}(z^{-1})=z^{-2(\ell-1)}[\mu z^2\mathfrak{p}(z)+\mathfrak{q}(z)], \\[1mm] &\mathfrak{s}(z^{-1})=z^{-2\ell}[\lambda z^2\mathfrak{p}(z)-\mu\,\mathfrak{q}(z)]. \end{aligned}$$
(55)

Substituting \(z=1\) in the last four equalities, we obtain

$$\mathfrak{q}(1)=-\mu\mathfrak{p}(1)+\mathfrak{r}(1),\qquad\mathfrak{s}(1)=(\lambda+\mu^2)\mathfrak{p}(1)-\mu\mathfrak{r}(1).$$
Using these equalities, we obtain
$$\mathcal{D}_\ell=(\lambda+\mu^2)\mathfrak{p}^2(1)-\mathfrak{r}^2(1).$$
Finally, using this formula and the explicit expressions for the \(\mathfrak{pqrs}\) polynomials in the first four orders given above, we obtain the explicit representations
$$\begin{aligned} \, \ell=1\colon&\quad\mathcal{D}_\ell=\lambda, \\[1mm] \ell=2\colon&\quad\mathcal{D}_\ell=\lambda-\lambda^2+\mu^2, \\[1mm] \ell=3\colon&\quad\mathcal{D}_\ell=-4\lambda^2+ \lambda^3+4\mu^2-4\lambda(\mu^2-1), \\[1mm] \ell=4\colon&\quad\mathcal{D}_\ell=10\lambda^3-\lambda^4- 9\mu^2(\mu^2-4)-6\lambda(7\mu^2-6)+\lambda^2(10\mu^2-33). \end{aligned} $$
(56)

B. Group properties of transformations generated by $$\mathcal{L}$$ -operators for $$\lambda+\mu^2>0$$

We interpreted the constant \(\omega \) introduced in formulas (3) as an arbitrary nonzero real number. Its role consists in a “synchronous scaling” of the operators \(\mathcal{L}_{\mathrm{B}}\) and \(\mathcal{L}_{\mathrm{C}}\), and \(\omega\) can be fixed in any desired way, as needed. It follows from formulas (6)–(14) that the useful effect simplifying their form is obtained if \(\omega\) is chosen from the condition \(|(2\omega)^2(\lambda+\mu^2)|=1\). More precisely, depending on the values of \(\lambda\) and \(\mu\), we obtain either \((2\omega)^2 (\lambda+\mu^2)=1\) or \((2\omega)^2(\lambda+\mu^2)=-1\). We considered the first case in the main text, and we therefore focus on the second case here. It corresponds to the domain in the space of the parameters \(\lambda\) and \(\mu\) such that

$$\lambda+\mu^2>0.$$
For a given choice of \(\omega\), the composition laws for the \(\mathcal{L}\)-operators in this domain become
$$\begin{aligned} \, &\mathcal{L}_{\mathrm{A}}\circ\mathcal{L}_{\mathrm{A}}=-\mathcal{D}_\ell\cdot\mathrm{Id}, \\[1mm] &\mathcal{L}_{\mathrm{B}}\circ\mathcal{L}_{\mathrm{B}}=-\mathcal{D}_\ell\cdot\mathcal{M}, \\[1mm] &\mathcal{L}_{\mathrm{C}}\circ\mathcal{L}_{\mathrm{C}}=-\mathrm{Id}, \\[1mm] &\mathcal{L}_{\mathrm{A}}\circ\mathcal{L}_{\mathrm{B}}=\mathcal{D}_\ell\cdot\mathcal{M}^{-1}\circ\mathcal{L}_{\mathrm{C}}, \\[1mm] &\mathcal{L}_{\mathrm{B}}\circ\mathcal{L}_{\mathrm{A}}=-\mathcal{D}_\ell\cdot\mathcal{L}_{\mathrm{C}}, \\[1mm] &\mathcal{L}_{\mathrm{B}}\circ\mathcal{L}_{\mathrm{C}}=\mathcal{M}\circ\mathcal{L}_{\mathrm{A}}, \\[1mm] &\mathcal{L}_{\mathrm{C}}\circ\mathcal{L}_{\mathrm{B}}=-\mathcal{L}_{\mathrm{A}}, \\[1mm] &\mathcal{L}_{\mathrm{C}}\circ\mathcal{L}_{\mathrm{A}}=\mathcal{L}_{\mathrm{B}}, \\[1mm] &\mathcal{L}_{\mathrm{A}}\circ\mathcal{L}_{\mathrm{C}}=-\mathcal{M}^{-1}\circ\mathcal{L}_{\mathrm{B}}. \end{aligned} $$
(57)

A second simplification is achieved by leveling the constant \(\mathcal{D}_\ell\). In contrast to \(\omega\), this is an invariant, a particular (polynomial) function of the parameters \(\lambda\) and \(\mu\) (see Appendix A). But we can perform a specific normalization of the operators \(\mathcal{L}_{\mathrm{A}}\) and \(\mathcal{L}_{\mathrm{B}}\), multiplying them by \(\mathcal{D}_\ell^{-1/2}\) for \(\mathcal{D}_\ell>0\) or by \((-\mathcal{D}_\ell)^{-1/2}\) for \(\mathcal{D}_\ell<0\). Only the sign of \(\mathcal{D}_\ell\) then remains. This allows simplifying rules (57) as follows.

If \(\mathcal{D}_\ell>0\), then we define

$$\begin{alignedat}2 &\mathbf{a}:=\mathcal{D}_\ell^{-1/2}\cdot\mathcal{L}_{\mathrm{A}},&\qquad &{}^*\mathbf{a}:=-\mathcal{D}_\ell^{-1/2}\cdot\mathcal{L}_{\mathrm{A}}, \\[1mm] &\mathbf{b}:=\mathcal{D}_\ell^{-1/2}\cdot\mathcal{L}_{\mathrm{B}},&\qquad &{}^*\mathbf{b}:=-\mathcal{D}_\ell^{-1/2}\cdot\mathcal{L}_{\mathrm{B}}, \\[1mm] &\mathbf{c}:=\mathcal{L}_{\mathrm{C}},&\qquad&{}^*\mathbf{c}:=-\mathcal{L}_{\mathrm{C}}. \end{alignedat} $$
(58)
If \(\mathcal{D}_\ell>0\), then we define
$$\begin{alignedat}2 &\mathbf{a}:=\mathcal{L}_{\mathrm{C}},&\qquad&{}^*\mathbf{a}:=-\mathcal{L}_{\mathrm{C}}, \\[1mm] &\mathbf{b}:=(-\mathcal{D}_\ell)^{-1/2}\cdot\mathcal{L}_{\mathrm{A}},&\qquad &{}^*\mathbf{b}:=-(-\mathcal{D}_\ell)^{-1/2}\cdot\mathcal{L}_{\mathrm{A}}, \\[1mm] &\mathbf{c}:=(-\mathcal{D}_\ell)^{-1/2}\cdot\mathcal{L}_{\mathrm{B}},&\qquad &{}^*\mathbf{c}:=-(-\mathcal{D}_\ell)^{-1/2}\cdot\mathcal{L}_{\mathrm{B}}. \end{alignedat} $$
(59)
Using these definitions, we can rewrite composition rules (57) as
$$\begin{array}{l} \text{if }\mathcal{D}_\ell>0\colon\\ \mathbf{a}\circ\mathbf{a}=-\mathrm{Id},\\ \mathbf{b}\circ\mathbf{b}=-\mathcal{M},\\ \mathbf{c}\circ\mathbf{c}=-\mathrm{Id},\\ \mathbf{a}\circ\mathbf{b}=\mathcal{M}^{-1}\circ\mathbf{c},\\ \mathbf{b}\circ\mathbf{a}={}^*\mathbf{c},\\ \mathbf{b}\circ\mathbf{c}=\mathcal{M}\circ\mathbf{a},\\ \mathbf{c}\circ\mathbf{b}={}^*\mathbf{a},\\ \mathbf{c}\circ\mathbf{a}=\mathbf{b},\\ \mathbf{a}\circ\mathbf{c}=\mathcal{M}^{-1}\circ{}^*\mathbf{b}, \end{array}\quad \begin{array}{|@{\;\;\;\;\;\;}l} \text{if }\mathcal{D}_\ell<0\colon\\ \mathbf{a}\circ\mathbf{a}=-\mathrm{Id},\\ \mathbf{b}\circ\mathbf{b}=\mathrm{Id},\\ \mathbf{c}\circ\mathbf{c}=\mathcal{M},\\ \mathbf{a}\circ\mathbf{b}=\mathbf{c},\\ \mathbf{b}\circ\mathbf{a}=\mathcal{M}^{-1}\circ{}^*\mathbf{c},\\ \mathbf{b}\circ\mathbf{c}=\mathcal{M}^{-1}\circ{}^*\mathbf{a},\\ \mathbf{c}\circ\mathbf{b}=\mathbf{a},\\ \mathbf{c}\circ\mathbf{a}=\mathcal{M}\circ\mathbf{b},\\ \mathbf{a}\circ\mathbf{c}={}^*\mathbf{b}. \end{array} $$
(60)

It follows from an analysis of tables (60) that there exist two groups, each containing the subgroup \(\mathbb{Z}\) generated by the monodromy operator \(\mathcal{M}\) as a normal divisor. These groups will be described in a subsequent paper. In conclusion, we note that the quotient group by this normal divisor is the quaternion group for \(\mathcal{D}_\ell>0\) and the dihedral group for \(\mathcal{D}_\ell<0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchstaber, V.M., Tertychnyi, S.I. Group algebras acting on the space of solutions of a special double confluent Heun equation. Theor Math Phys 204, 967–983 (2020). https://doi.org/10.1134/S0040577920080012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920080012

Keywords

Navigation