Skip to main content
Log in

The KNTZ trick from arborescent calculus and the structure of the differential expansion

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The recently proposed Kameyama–Nawata–Tao–Zhang (KNTZ ) trick completed the long search for exclusive Racah matrices \( \kern2.3pt\overline{\vphantom{S}\kern3.70831pt}\kern-6.00832pt{S} \) and \(S\) for all rectangular representations. The success of this description is a remarkable achievement of modern knot theory and classical representation theory, which was initially considered a tool for knot calculus but instead turned out to be its direct beneficiary. We show that this approach in fact consists in converting the arborescent evolution matrix \( \kern2.3pt\overline{\vphantom{S}\kern3.70831pt}\kern-6.00832pt{S} \kern1.5pt\overline{\vphantom{{T}}\kern5.23265pt}\kern-6.73265pt{T} ^2 \kern2.3pt\overline{\vphantom{S}\kern3.70831pt}\kern-6.00832pt{S} \) into the triangular form \( \mathcal{B} \), and we demonstrate how this works and show how the previous puzzles and miracles of the differential expansions look from this standpoint. Our conjecture for the form of the triangular matrix \( \mathcal{B} \) in the case of the nonrectangular representation \([3,1]\) is completely new. No calculations are simplified in this case, but we explain how it all works and what remains to be done to completely prove the conjecture. The discussion can also be useful for extending the method to nonrectangular cases and for the related search for gauge-invariant arborescent vertices. As one more application, we present a puzzling, but experimentally supported, conjecture that the form of the differential expansion for all knots is completely described by a particular case of twist knots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

REFERENCES

  1. N. M. Dunfield, S. Gukov, and J. Rasmussen, “The superpolynomial for knot homologies,” Exp. Math., 15, 129–159 (2006); arXiv:math/0505662v2 (2005).

    Article  MathSciNet  Google Scholar 

  2. H. Itoyama, A. Mironov, A. Morozov, and An. Morozov, “HOMFLY and superpolynomials for figure eight knot in all symmetric and antisymmetric representations,” JHEP, 1207, 131 (2012); arXiv:1203.5978v5 [hep-th] (2012).

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Mironov, A. Morozov, and An. Morozov, “Evolution method and ‘differential hierarchy’ of colored knot polynomials,” AIP Conf. Proc., 1562, 123–155 (2013); arXiv:1306.3197v1 [hep-th] (2013); “On colored HOMFLY polynomials for twist knots,” Modern Phys. Lett. A, 29, 1450183 (2014); arXiv:1408.3076v2 [hep-th] (2014).

    Article  ADS  Google Scholar 

  4. S. B. Arthamonov, A. D. Mironov, and A. Yu. Morozov, “Differential hierarchy and additional grading of knot polynomials,” Theor. Math. Phys., 179 509–542 (2014); arXiv:1306.5682v1 [hep-th] (2013).

    Article  MathSciNet  Google Scholar 

  5. J. W. Alexander, “Topological invariants of knots and links,” Trans. Amer. Math. Soc., 30, 275–306 (1928); V. F. R. Jones, “Index for subfactors,” Invent. Math., 72, 1–25 (1983); “A polynomial invariant for knots via von Neumann algebras,” Bull. Amer. Math. Soc., n.s., 12, 103–111 (1985); “Hecke algebra representations of braid groups and link polynomials,” Ann. Math., 126, 335–388 (1987); L. H. Kauffman, “State models and the Jones polynomial,” Topology, 26, 395–407 (1987); P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, “A new polynomial invariant of knots and links,” Bull. Amer. Math. Soc., n.s., 12, 239–246 (1985); J. H. Przytycki and K. P. Traczyk, “Invariants of links of Conway type,” Kobe J. Math., 4, 115–139 (1987); A. Yu. Morozov, ““Are there \(p\)-adic knot invariants?” Theor. Math. Phys., 187, 447–454 (2016); arXiv:1509.04928v2 [hep-th] (2015).

    Article  MathSciNet  Google Scholar 

  6. E. Witten, “Quantum field theory and the Jones polynomial,” Commun. Math. Phys., 121, 351–399 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  7. R. K. Kaul and T. R. Govindarajan, “Three-dimensional Chern–Simons theory as a theory of knots and links,” Nucl. Phys. B, 380, 293–333 (1992); arXiv:hep-th/9111063v1 (1991); P. Rama Devi, T. R. Govindarajan, and R. K. Kaul, “Three-dimensional Chern–Simons theory as a theory of knots and links (III): Compact semi-simple group,” Nucl. Phys. B, 402, 548–566 (1993); arXiv:hep-th/9212110v1 (1992); P. Ramadevi and T. Sarkar, “On link invariants and topological string amplitudes,” Nucl. Phys. B, 600, 487–511 (2001); arXiv:hep-th/0009188v4 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  8. E. Guadagnini, M. Martellini, and M. Mintchev, “Chern–Simons field theory and quantum groups,” in: Quantum Groups (Lect. Notes in Phys., Vol. 370, H. D. Doebner and J. D. Hennig, eds.), World Scientific, Singapore (1990), pp. 307–317; “Chern–Simons holonomies and the appearance of quantum groups,” Phys. Lett. B, 235, 275–281 (1990); N. Yu. Reshetikhin and V. G. Turaev, “Ribbon graphs and their invariants derived from quantum groups,” Commun. Math. Phys., 127, 1–26 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Morozov, “Factorization of differential expansion for antiparallel double-braid knots,” JHEP, 1609, 135 (2016); arXiv:1606.06015v8 [hep-th] (2016).

    Article  ADS  Google Scholar 

  10. G. Racah, “Theory of complex spectra. II,” Phys. Rev., 62, 438–462 (1942); E. P. Wigner, “On the matrices which reduce the Kronecker products of representations of S. R. groups [1951 unpublished],” in: Quantum Theory of Angular Momentum: A Collection of Reprints and Original Papers (L. C. Biedenharn Jr. and H. van Dam, eds.), Acad. Press, New York, pp. 87–133 (1965); Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (Pure Appl. Phys., Vol. 5). Acad. Press, New York (1959); L. D. Landau and E. M. Lifshitz, A Course of Theoretical Physics [in Russian], 3, Quantum Mechanics, Nauka, Moscow (1989); English transl. prev. ed., Oxford, Pergamon, (1965); J. S. Carter, D. E. Flath, and M. Saito, The Classical and Quantum \(6j\)-Symbols (Math. Notes, Vol. 43), Princeton Univ. Press, Princeton, N. J. (1995); S. Nawata, P. Ramadevi, and Zodinmawia, “Multiplicity-free quantum \(6j\)-symbols for \(U_q(\mathfrak{sl}_N)\),” Lett. Math. Phys., 103, 1389–1398 (2013); arXiv:1302.5143v3 [hep-th] (2013); A. Mironov, A. Morozov, and A. Sleptsov, “Colored HOMFLY polynomials for the pretzel knots and links,” JHEP, 1507, 069 (2015); arXiv:1412.84322 [hep-th] (2014); V. Alekseev, An. Morozov, and A. Sleptsov, “Interplay between symmetries of quantum 6-j symbols and the eigenvalue hypothesis,” arXiv:1909.07601v3 [hep-th] (2019); “Multiplicity-free \(U_q(sl_N)\) 6-j symbols: Relations, asymptotics, symmetries,” arXiv:1912.13325v3 [hep-th] (2019).

    Article  ADS  Google Scholar 

  11. A. Mironov, A. Morozov, An. Morozov, P. Ramadevi, and V. K. Singh, “Colored HOMFLY polynomials of knots presented as double fat diagrams,” JHEP, 1507, 109 (2015); arXiv:1504.00371v3 [hep-th] (2015); S. Nawata, P. Ramadevi, and V. K. Singh, “Colored HOMFLY polynomials that distinguish mutant knots,” arXiv:1504.00364v3 [math.GT] (2015); A. Mironov, R. Mkrtchyan, and A. Morozov, “Universal Racah matrices and adjoint knot polynomials: Arborescent knots,” Phys. Lett. B, 755, 47–57 (2016); arXiv:1511.09077v2 [hep-th] (2015).

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Kameyama, S. Nawata, R. Tao, and H. D. Zhang, “Cyclotomic expansions of HOMFLY-PT colored by rectangular Young diagrams,” arXiv:1902.02275v2 [math.GT] (2019).

  13. A. Morozov, “On exclusive Racah matrices \(\overline S\) for rectangular representations,” Phys. Lett. B, 793, 116–125 (2019); arXiv:1902.04140v6 [hep-th] (2019).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Morozov, “Extension of KNTZ trick to non-rectangular representations,” Phys. Lett. B, 793, 464–468 (2019); arXiv:1903.00259v2 [hep-th] (2019).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Morozov, “Pentad and triangular structures behind the Racah matrices,” Eur. Phys. J. Plus, 135, 196 (2020); arXiv:1906.09971v1 [hep-th] (2019).

    Article  Google Scholar 

  16. S. Gukov, A. Schwarz, and C. Vafa, “Khovanov–Rozansky homology and topological strings,” Lett. Math. Phys., 74, 53–74 (2005); arXiv:hep-th/0412243v3 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Aganagic and Sh. Shakirov, “Knot homology from refined Chern–Simons theory,” arXiv:1105.5117v2 [hep-th] (2011); “Refined Chern–Simons theory and knot homology,” in: String-Math 2011 (Proc. Symp. Pure Math., Vol. 85, J. Block, J. Distler, R. Donagi, and E. Sharpe, eds.), Amer. Math. Soc., Providence, R. I. pp. 3–31 (2012); arXiv:1202.2489v1 [hep-th] (2012); “Refined Chern–Simons theory and topological string,” arXiv:1210.2733v1 [hep-th] (2012); P. Dunin-Barkowski, A. Mironov, A. Morozov, A. Sleptsov, and A. Smirnov, “Superpolynomials for torus knots from evolution induced by cut-and-join operators,” JHEP, 1303, 021 (2013); arXiv:1106.4305v4 [hep-th] (2011); I. Cherednik, “Jones polynomials of torus knots via DAHA,” arXiv:1111.6195v10 [math.QA] (2011).

  18. A. Okounkov and G. Olshanskii, “Shifted Schur functions,” St. Petersburg Math. J., 9, 239–300 (1998); “Shifted Jack polynomials, binomial formula, and applications,” Math. Res. Lett., 4, 69–78 (1997); arXiv:q-alg/9608020v2 (1996).

    MathSciNet  Google Scholar 

  19. A. Okounkov, “Binomial formula for Macdonald polynomials,” arXiv:q-alg/9608021v2 (1996).

  20. E. Gorsky, S. Gukov, and M. Stosic, “Quadruply-graded colored homology of knots,” Fund. Math., 243, 209–299 (2018); arXiv:1304.3481v1 [math.QA] (2013).

    Article  MathSciNet  Google Scholar 

  21. S. Nawata and A. Oblomkov, “Lectures on knot homology,” in: Physics and Mathematics of Link Homology (Centre de Recherches Mathématiques, Université de Montreal, Montreal, QC, 24 June–5 July, 2013, S. Gukov, M. Khovanov, and J. Walcher, eds.), Amer. Math. Soc., Providence, R. I. (2016), pp. 137-177; arXiv:1510.01795v5 [math-ph] (2015).

    MATH  Google Scholar 

  22. A. Anokhina and A. Morozov, “Are Khovanov–Rozansky polynomials consistent with evolution in the space of knots?” JHEP, 1804, 66 (2018); arXiv:1802.09383v1 [hep-th] (2018); P. Dunin-Barkowski, A. Popolitov, and S. Popolitova, “Evolution for Khovanov polynomials for figure-eight-like family of knots,” arXiv:1812.00858v3 [math-ph] (2018); A. Anokhina, A. Morozov, and A. Popolitov, “Nimble evolution for pretzel Khovanov polynomials,” Eur. Phys. J. C, 79, 867 (2019); arXiv:1904.10277v2 [hep-th] (2019).

    Article  ADS  MathSciNet  Google Scholar 

  23. D. Galakhov, D. Melnikov, A. Mironov, A. Morozov, and A. Sleptsov, “Colored knot polynomials for arbitrary pretzel knots and links,” Phys. Lett. B, 743, 71–74 (2015); arXiv:1412.2616v1 [hep-th] (2014); A. Mironov, A. Morozov, and A. Sleptsov, “Colored HOMFLY polynomials for the pretzel knots and links,” JHEP, 1507, 069 (2015); arXiv:1412.8432v2 [hep-th] (2014); D. Galakhov, D. Melnikov, A. Mironov, A. Morozov, and A. Sleptsov, “Knot invariants from Virasoro related representation and pretzel knots,” Nucl. Phys. B, 899, 194–228 (2015); arXiv:1502.02621v1 [hep-th] (2015); A. Mironov, A. Morozov, An. Morozov, and A. Sleptsov, “Quantum Racah matrices and \(3\)-strand braids in irreps \(R\) with \(|R|=4\),” JETP Lett., 104, 56–61 (2016); arXiv:1605.03098v1 [hep-th] (2016); Sh. Shakirov and A. Sleptsov, “Quantum Racah matrices and 3-strand braids in representation [3,3],” arXiv:1611.03797v2 [hep-th] (2016); S. Arthamonov and Sh. Shakirov, “Genus two generalization of \(A_1\) spherical DAHA,” Selecta Math., 25, 17 (2019); arXiv:1704.02947v1 [math.QA] (2017).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Morozov, “Differential expansion and rectangular HOMFLY for the figure eight knot,” Nucl. Phys., 911, 582–605 (2015); arXiv:1605.09728v3 [hep-th] (2016).

    Article  ADS  Google Scholar 

  25. Ya. A. Kononov and A. Yu. Morozov, “Rectangular superpolynomials for the figure-eight knot \(4_1\),” Theor. Math. Phys., 193, 1630–1646 (2017).

    Article  Google Scholar 

  26. Ya. Kononov and A. Morozov, “On rectangular HOMFLY for twist knots,” Modern. Phys. Lett. A, 31, 1650223 (2016); arXiv:1610.04778v1 [hep-th] (2016).

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Morozov, “Factorization of differential expansion for non-rectangular representations,” Modern. Phys. Lett. A, 33, 1850062 (2018); arXiv:1612.00422v3 [hep-th] (2016).

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Morozov, “On moduli space of symmetric orthogonal matrices and exclusive Racah matrix \(\overline{S}\) for representation \(R=[3,1]\) with multiplicities,” Phys. Lett. B, 766, 291–300 (2017); arXiv:1701.00359v2 [hep-th] (2017).

    Article  ADS  Google Scholar 

  29. A. Morozov, “HOMFLY for twist knots and exclusive Racah matrices in representation [333],” Phys. Lett. B, 778, 426–434 (2018); arXiv:1711.09277v3 [hep-th] (2017).

    Article  ADS  Google Scholar 

  30. A. Mironov, A. Morozov, An. Morozov, P. Ramadevi, V. Kumar Singh, and A. Sleptsov, “Tabulating knot polynomials for arborescent knots,” J. Phys. A: Math. Theor., 50 085201 (2017); arXiv:1601.04199v2 [hep-th] (2016).

    Article  ADS  MathSciNet  Google Scholar 

  31. K. Koike, “On the decomposition of tensor products of the representations of the classical groups: By means of the universal characters,” Adv. Math., 74, 57–86 (1989).

    Article  MathSciNet  Google Scholar 

  32. H. Kanno, “Universal character and large \(N\) factorization in topological gauge/string theory,” Nucl. Phys. B, 745, 165–175 (2006); arXiv:hep-th/0602179v2 (2006). ; A. Mironov and A. Morozov, “On the Hopf-induced deformation of topological locus,” JETP Lett., 107, 728–735 (2018); arXiv:1804.10231v1 [hep-th] (2018); “Kerov functions for composite representations and Macdonald ideal,” Nucl. Phys. B, 944, 114641 (2019); arXiv:1903.00773v1 [hep-th] (2019); H. Awata, H. Kanno, A. Mironov, and A. Morozov, “Can tangle calculus be applicable to hyperpolynomials?” Nucl. Phys. B, 949, 114816 (2019); arXiv:1905.00208v1 [hep-th] (2019).

    Article  ADS  MathSciNet  Google Scholar 

  33. Ya. Kononov and A. Morozov, “On the defect and stability of differential expansion,” JETP Lett., 101, 831–834 (2015); arXiv:1504.07146v3 [hep-th] (2015).

    Article  ADS  Google Scholar 

  34. L. Bishler and A. Morozov, “Perspectives of differential expansion,” arXiv:2006.01190v1 [hep-th] (2020).

  35. J. Gu and H. Jockers, “A note on colored HOMFLY polynomials for hyperbolic knots from WZW models,” Commun. Math. Phys., 338, 393–456 (2015); arXiv:1407.5643v3 [hep-th] (2014).

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Anokhina, A. Mironov, A. Morozov, and An. Morozov, “Knot polynomials in the first non-symmetric representation,” Nucl. Phys. B, 882, 171–194 (2014); arXiv:1211.6375v1 [hep-th] (2012).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

This research was supported in part by a grant from the Russian Science Foundation (Project No. 16-12-10344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Morozov.

Ethics declarations

The author declares no conflicts of interest.

Appendix

In this appendix, we present the fragment of \( \mathcal{B} ^{ \mathrm{rel} }\) that includes all the representations in \([3,1]\times \overline {[3,1]}\). We described its role and applications in Sec. 10.2. The full \(10{\times}10\) matrix \( \mathcal{B} \) in these coordinates also has a block form: the blocks of \( \mathcal{B} ^{ \mathrm{rel} }_{[3,1]}\) are

$$\begin{aligned} \, &\left(\begin{array}{c|c|c|c|c|c|c|c|c|c|c} &\kern-8.05pt& \varnothing &\kern-8.05pt&[1]_z&[2]_z&\kern-8.05pt&[1]_y&[2]_y&[1]_x&[2]_x\\\hline &\kern-8.05pt&&\kern-8.05pt&&&\kern-8.05pt&&&&\\[-4.25mm]\hline \varnothing &\kern-8.05pt&1&\kern-8.05pt&&&\kern-8.05pt&&&&\\ {}[1]_z&\kern-8.05pt&0&\kern-8.05pt&A^2&&\kern-8.05pt&&&&\\\hline &\kern-8.05pt&&\kern-8.05pt&&&\kern-8.05pt&&&&\\[-4.25mm]\hline {}[2]_z&\kern-8.05pt&0&\kern-8.05pt&-q^2A^3&q^4A^4&\kern-8.05pt&&&&\\ {}[1]_y&\kern-8.05pt&-A^2&\kern-8.05pt&0&0&\kern-8.05pt&A^2&&&\\ {}[2]_y&\kern-8.05pt&q^2A^4&\kern-8.05pt& \underline {-q^3A^4[N-2]}&0&\kern-8.05pt&-[2]q^3A^4&q^4A^4&&\\ {}[1]_x&\kern-8.05pt&-A^2&\kern-8.05pt&0&0&\kern-8.05pt&0&0&A^2&\\ {}[2]_x&\kern-8.05pt&q^2A^4&\kern-8.05pt& \underline {-q^3A^4[N-2]}&0&\kern-8.05pt & \underline {-\frac{q^3A^4}{[2]}}&0& \underline {-\frac{q^3[3]A^4}{[2]}}&q^4A^4\\\hline {}[3]&\kern-8.05pt&-q^6A^6&\kern-8.05pt&q^8A^6[2][N-2]&q^{11}A^7[N-2]&\kern-8.05pt &q^8A^6&-\frac{q^{10}A^6}{[3]}&\frac{[4]q^8A^6}{[2]}&-\frac{[4][2]q^{10}A^6}{[3]} \\\hline {}[1,1]&\kern-8.05pt&\frac{A^4}{q^2}&\kern-8.05pt&\frac{[2]A^4[N+3]}{q^3}&0&\kern-8.05pt &-\frac{[2]A^4}{q^3[3]}&0&-\frac{[4]A^4}{q^3[3]}&0 \\\hline {}[2,1]&\kern-8.05pt&-A^6&\kern-8.05pt&{-[3]A^5}-\frac{A^6[N+4]}{q}&-\frac{q^2A^7[N+4]}{[2]} &\kern-8.05pt&A^6&-\frac{qA^6}{[3][2]}&\frac{[4]A^6}{[2]}&-\frac{[4]qA^6}{[3]} \\\hline {}[3,1]&\kern-8.05pt&q^4A^8&\kern-8.05pt&q^4[4][2]A^7&q^{7}[4]A^8&\kern-8.05pt&-\frac{[4]q^5A^8}{[3]} &\frac{[4]q^7A^8}{[3]^2}&-\frac{[4]^2q^5A^8}{[3][2]}&\frac{[4]^2[2]q^7A^8}{[3]^2} \end{array}\right), \\[4mm] &\begin{aligned} \, &\left(\begin{array}{c|c|c|c|c|c} &\kern-8.05pt& \varnothing &\kern-8.05pt&[1]_z&[2]_z\\\hline &\kern-8.05pt&&\kern-8.05pt&&\\[-4.25mm]\hline X_2&\kern-8.05pt&-A^6&\kern-8.05pt&-[3]A^5-\frac{A^6[N+4]}{q}+\frac{A^6[N]}{\{q\}} &-\frac{q^2A^6[N+4][N+1]}{[2]} \\ X_3&\kern-8.05pt&q^4A^8&\kern-8.05pt&q^4[4][2]A^7-\frac{q^5A^8[N+1]}{\{q\}} &q^7[4]A^8-\frac{q^6A^8[N+2][N+1]}{[2]}-\frac{q^3A^7[N+1]}{\{q\}} \end{array}\right), \\[4mm] &\left(\begin{array}{c|c|c|c} &\kern-8.05pt&[1]_y&[2]_y\\\hline &\kern-8.05pt&&\\[-4.25mm]\hline X_2&\kern-8.05pt&A^6-\frac{A^5[N]}{q[3][2]\{q\}}&-\frac{qA^5[N+1]}{[3][2]} \\ X_3&\kern-8.05pt&-\frac{[4]q^5A^8}{[3]}+\frac{q^4A^7[N+1]}{[3][2]\{q\}} &\frac{[4]q^7A^8}{[3]^2}-\frac{[4]q^4A^7[N+1]}{[3]^2[2]^2\{q\}} \end{array}\right), \\[4mm] &\left(\begin{array}{c|c|c|c|c|c} &\kern-8.05pt&X_2&X_3&\kern-8.05pt&\dots\\\hline &\kern-8.05pt&&&\kern-8.05pt&\\[-4.25mm]\hline X_2&\kern-8.05pt&\frac{[4]A^6}{[2]}+\frac{A^5[N]}{q[3][2]\{q\}}&-\frac{qA^5[N+4]}{[3]} &\kern-8.05pt&\\ X_3&\kern-8.05pt&-\frac{[4]^2q^5A^8}{[3][2]}-\frac{q^4A^7[N+1]}{[3][2]]\{q\}} &\frac{[4]^2[2]q^7A^8}{[3]^2}+\frac{q^3A^7[N+1]}{[2]}+ \frac{[4]q^4A^7[N+1]}{[3]^2[2]^2\{q\}} &\kern-8.05pt&\\\hline &\kern-8.05pt&&&\kern-8.05pt&\\[-4.25mm]\hline \vdots&\kern-8.05pt&&&\kern-8.05pt&\end{array}\right), \end{aligned} \\[4mm] &\left(\begin{array}{c|c|c|c|c|c|c|c|c|c|c} &\kern-8.05pt&[3]&\kern-8.05pt&[1,1]&[2,1]&\kern-8.05pt&[3,1]&X_2&X_3&\dots\\\hline &\kern-8.05pt&&\kern-8.05pt&&&\kern-8.05pt&&&&\\[-4.25mm]\hline {}[3]&\kern-8.05pt&q^{12}A^6&\kern-8.05pt&&&\kern-8.05pt&&& \\\hline {}[1,1]&\kern-8.05pt&0&\kern-8.05pt&\frac{A^4}{q^4}&&\kern-8.05pt&&& \\ {}[2,1]&\kern-8.05pt&0&\kern-8.05pt&-\frac{[3]A^6}{q[2]}&A^6&\kern-8.05pt&&&& \\ {}[3,1]&\kern-8.05pt&-\frac{[4]q^9A^8}{[3]}&\kern-8.05pt&\frac{[4]q^4A^8}{[2]}&-\frac{[4][2]q^6A^8}{[3]}&\kern-8.05pt&q^8A^8&&& \\\hline X_2&\kern-8.05pt&0&\kern-8.05pt&-\frac{A^5[N-3]}{q[2]}&0&\kern-8.05pt&0&A^4&& \\ X_3&\kern-8.05pt&-\frac{q^8A^7[N+5]}{[3]}&\kern-8.05pt&-\frac{q^3A^7[N-3]}{[2]}&\frac{q^5A^7[N-1][N-3]}{[3][N]}&\kern-8.05pt&0&-\frac{q^5A^6[N+1]}{[N]}&q^6A^6 \\\hline &\kern-8.05pt&&\kern-8.05pt&&&\kern-8.05pt&&&&\\[-4.25mm]\hline \vdots&\kern-8.05pt&&\kern-8.05pt&&&\kern-8.05pt&&&&\end{array}\right). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, A.Y. The KNTZ trick from arborescent calculus and the structure of the differential expansion. Theor Math Phys 204, 993–1019 (2020). https://doi.org/10.1134/S0040577920080036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920080036

Keywords

Navigation