Skip to main content
Log in

Optimal time evolution for pseudo-Hermitian Hamiltonians

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

If an initial state \(|\psi_{ \scriptscriptstyle{\mathrm{I}} } \rangle \) and a final state \(|\psi_{ \scriptscriptstyle{\mathrm{F}} } \rangle \) are given, then there exist many Hamiltonians under whose action \(|\psi_{ \scriptscriptstyle{\mathrm{I}} } \rangle \) evolves into \(|\psi_{ \scriptscriptstyle{\mathrm{F}} } \rangle \). In this case, the problem of the transition of \(|\psi_{ \scriptscriptstyle{\mathrm{I}} } \rangle \) to \(|\psi_{ \scriptscriptstyle{\mathrm{F}} } \rangle \) in the least time is very interesting. It was previously shown that for a Hermitian Hamiltonian, there is an optimum evolution time if \(|\psi_{ \scriptscriptstyle{\mathrm{I}} } \rangle \) and \(|\psi_{ \scriptscriptstyle{\mathrm{F}} } \rangle \) are orthogonal. But for a \(PT\)-symmetric Hamiltonian, this time can be arbitrarily small, which seems amazing. We discuss the optimum time evolution for pseudo-Hermitian Hamiltonians and obtain a lower bound for the evolution time under the condition that the Hamiltonian is bounded. The optimum evolution time can be attained in the case where two quantum states are orthogonal with respect to some inner product. The results in the Hermitian and pseudo-Hermitian cases coincide if the evolution is unitary with some well-defined inner product. We also analyze two previously studied examples and find that they are consistent with our theory. In addition, we give some explanations of our results with two examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, “Time-optimal quantum evolution,” Phys. Rev. Lett., 96, 060503 (2006); arXiv:quant-ph/0511039v1 (2005).

    Article  ADS  Google Scholar 

  2. C. M. Bender and D. C. Brody, “Optimal time evolution for Hermitian and non-Hermitian Hamiltonians,” in: Time in Quantum Mechanics, 2 (Lect. Notes Phys., Vol. 789, G. Muga, A. Ruschhaupt, and A. del Campo, eds.), Springer, Berlin (2009), pp. 341–361; arXiv:0808.1823v1 [quant-ph]. (2008)

    MathSciNet  Google Scholar 

  3. D. C. Brody and D. W. Hook, “On optimum Hamiltonians for state transformations,” J. Phys. : Math. Gen., 39, L167–L170 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  4. J. Anandan and Y. Aharonov, “Geometry of quantum evolution,” Phys. Rev. Lett., 65, 1697–1700 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Deffner and E. Lutz, “Energy-time uncertainty relation for driven quantum systems,” J. Phys. : Math. Theor., 46, 335302 (2013).

    Article  MathSciNet  Google Scholar 

  6. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, 2, John Wiley and Sons, New York (1969).

    MATH  Google Scholar 

  7. C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having \(\mathcal{PT}\) symmetry,” Phys. Rev. Lett., 80, 5243–5246 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  8. C. F. de Morisson Faria and A. Fring, “Time evolution of non-Hermitian Hamiltonian systems,” J. Phys. : Math. Gen., 39, 9269–9289 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Dey, A. Fring, and L. Gouba, “\(\mathcal{PT}\)-symmetric noncommutative spaces with minimal volume uncertainty relations,” J. Phys. : Math. Theor., 45, 385302 (2012).

    Article  ADS  Google Scholar 

  10. A. Mostafazadeh, “Pseudo-Hermiticity and generalized \(PT\)- and \(CPT\)-symmetries,” J. Math. Phys., 44, 974–989 (2003); arXiv:math-ph/0209018v3 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Albeverio, A. K. Motovilov, and A. A. Shkalikov, “Bounds on variation of spectral subspace under \(J\)-self-adjoint perturbation,” Integr. Equ. Oper. Theory, 64, 455–486 (2009).

    Article  MathSciNet  Google Scholar 

  12. E. Caliceti and S. Graffi, “Reality and non-reality of the spectrum of \(\mathcal{PT}\)-symmetric operators: Operator-theoretic criteria,” Pramana J. Phys., 73, 241–249 (2009).

    Article  ADS  Google Scholar 

  13. C. M. Bender, “Making sense of non-Hermitian Hamiltonians,” Rep. Prog. Phys., 70, 947–1018 (2007); arXiv:hep-th/0703096v1 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  14. H. X. Cao, Z. H. Guo, and Z. L. Chen, “CPT-frames for non-Hermitian Hamiltonians,” Commun. Theor. Phys., 60, 328–334 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  15. Z. H. Guo, H. X. Cao, and L. Lu, “Adiabatic approximation in \(PT\)-symmetric quantum mechanics,” Sci. China Phys. Mech. Astron., 57, 1835–1839 (2014).

    Article  ADS  Google Scholar 

  16. W. Wang, H. Cao, and Z. Chen, “Adiabatic approximation for the evolution generated by an \(A\)-uniformly pseudo-Hermitian Hamiltonian,” Theor. Math. Phys., 192, 1365–1379 (2017).

    Article  MathSciNet  Google Scholar 

  17. C. M. Bender, D. C. Brody, H. F. Jones, and B. K. Meister, “Faster than Hermitian quantum mechanics,” Phys. Rev. Lett., 98, 040403 (2007); arXiv:quant-ph/0609032v1 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Mostafazadeh, “Quantum brachistichrone problem and the geometry of the state space in pseudo-Hermitian quantum mechanics,” Phys. Rev. Lett., 99, 130502 (2007); arXiv:0706.3844v4 [quant-ph] (2007).

    Article  ADS  Google Scholar 

  19. P. E. G. Assis and A. Fring, “The quantum brachistochrone problem for non-Hermitian Hamiltonians,” J. Phys. : Math. Theor., 41, 244002 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Mostafazadeh, “Exact \(PT\)-symmetry is equivalent to Hermiticity,” J. Phys. : Math. Theor., 36, 7081–7091 (2003); arXiv:quant-ph/0304080v2 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Lee, “\(PT\)-symmetric quantum mechanics is a Hermitian quantum mechanics,” arXiv:1312.7738v5 [quant-ph] (2013).

  22. A. Mostafazadeh, “Pseudo-Hermiticity versus \(PT\) symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian,” J. Math. Phys., 43, 205–214 (2002); arXiv:math-ph/0107001v3 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  23. R. Zhang, H. Qin, and J. Xiao, “PT-symmetry entails pseudo-Hermiticity regardless of diagonalizability,” J. Math. Phys., 61, 012101 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  24. Y. N. Dou and H. K. Du, “Generalizations of the Heisenberg and Schrödinger uncertainty relations,” J. Math. Phys., 54, 103508 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  25. D. C. Brody, “Elementary derivation of passage times,” J. Phys. : Math. Gen., 36, 5587–5593 (2003); arXiv:quant-ph/0302067v1 (2003).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

One of the authors (W. H. W.) thanks Professor Andreas Fring for the extensive discussion about the Berry phase, is grateful to Julia Cen and Thomas Frith for the discussions, and also thanks City University London for the warm hospitality.

Funding

This research is supported by the National Natural Science Foundation of China (Grant Nos. 11871318, 11771009, 11701011, 11601300, 11571213, and 61602291), the FRF for the Central Universities (Grant No. GK202003093), and the State Scholarship Fund of China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Song.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W.H., Chen, Z.L., Song, Y. et al. Optimal time evolution for pseudo-Hermitian Hamiltonians. Theor Math Phys 204, 1020–1032 (2020). https://doi.org/10.1134/S0040577920080048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920080048

Keywords

Navigation