Skip to main content

Advertisement

Log in

Late Holocene variation in the Hard prey remains and stable isotope values of penguin and seal tissues from the Danger Islands, Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Ornithogenic soils in Antarctica provide a biological archive of the occupation history and trophic ecology of penguins and other marine species over geological timescales. Hard prey remains and predator tissues, which are well preserved in ornithogenic soils, can act as paleoecological proxies of past environmental conditions. Here we examine ornithogenic soils from an active colony of Pygoscelis spp. penguins on Platter Island in the Danger Islands Archipelago along the northeastern side of the Antarctic Peninsula. We radiocarbon dated penguin tissues from excavated ornithogenic soils and parameterized an age-depth model of penguin occupation history. Hard prey remains were enumerated and recovered Pygoscelis spp. penguin and Antarctic fur seal (Arctocephalus gazella) tissues were analyzed for stable isotopes carbon (δ13C) and nitrogen (δ15N) analysis. The oldest recovered ornithogenic soils at Platter Island date to 502–653 years BP and coincide with the start of a period of increased warming and glacial discharge in the northeastern Antarctic Peninsula. Penguin tissues δ15N values increased between the oldest and youngest dated ornithogenic soils but seal tissues did not. This may indicate that the trophic level of penguins, but not seals, has increased over time, a hypothesis supported by the concurrent increase in the hard prey remains of fish and squid taxa common to penguin diets recovered from ornithogenic soils. Future studies of ornithogenic soils in the Danger Islands Archipelago are warranted to test this hypothesis and assess the potential confounding effects of varying ecosystem isotopic baselines and penguin species composition over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in U.S. Antarctic Program Data Center at https://doi.org/10.15784/601364

References:

  • Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100

    CAS  PubMed  Google Scholar 

  • Baroni C, Orombelli G (1994) Abandoned penguin rookeries as Holocene paleoclimatic indicators in Antarctica. Geology 22:23–26

    Google Scholar 

  • Bentaleb I, Fontugne M, Descolas-Gros C et al (1996) Organic carbon isotopic composition of phytoplankton and sea-surface pCO2 reconstructions in the Southern Indian Ocean during the last 50,000 year. Org Geochem 24:399–410

    CAS  Google Scholar 

  • Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474

    Google Scholar 

  • Blix AS, Nordøy ES (2007) Ross seal (Ommatophoca rossii) annual distribution, diving behaviour, breeding and moulting, off Queen Maud Land, Antarctica. Polar Biol 30:1449–1458. https://doi.org/10.1007/s00300-007-0306-y

    Article  Google Scholar 

  • Borowicz A, McDowall P, Youngflesh C et al (2018) Multi-modal survey of Adélie penguin mega-colonies reveals the Danger Islands as a seabird hotspot. Sci Rep 8:3926. https://doi.org/10.1038/s41598-018-22313-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd I, McCafferty D, Reid K et al (1998) Dispersal of male and female Antarctic fur seals (Arctocephalus gazella). Can J Fish Aquat Sci 55:845–852

    Google Scholar 

  • Brasso RL, Polito MJ (2013) Trophic calculations reveal the mechanism of population-level variation in mercury concentrations between marine ecosystems: case studies of two polar seabirds. Mar Pollut Bull 75:244–249. https://doi.org/10.1016/j.marpolbul.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  • Brault EK, Koch PL, McMahon KW et al (2018) Carbon and nitrogen zooplankton isoscapes in West Antarctica reflect oceanographic transitions. Mar Ecol Prog Ser 593:29–45

    CAS  Google Scholar 

  • Bushula T, Pakhomov E, Kaehler S et al (2005) Diet and daily ration of two nototheniid fish on the shelf of the sub-Antarctic Prince Edward Islands. Polar Biol 28:585–593

    Google Scholar 

  • Casaux R, Baroni A, Ramon A (2003) Diet of antarctic fur seals Arctocephalus gazella at the Danco Coast, Antarctic Peninsula. Polar Biol 26:49–54

    Google Scholar 

  • Cherel Y, Hobson KA (2007) Geographical variation in carbon stable isotope signatures of marine predators: a tool to investigate their foraging areas in the Southern Ocean. Mar Ecol Prog Ser 329:281–287

    CAS  Google Scholar 

  • Daneri G, Carlini A (1999) Spring and summer predation on fish by the Antarctic fur seal, Arctocephalus gazella, at King George Island, South Shetland Islands. Can J Zool 77:1157–1160

    Google Scholar 

  • Daneri G, Piatkowski U, Coria N, Carlini A (1999) Predation on cephalopods by Antarctic fur seals, Arctocephalus gazella, at two localities of the Scotia Arc, Antarctica. Polar Biol 21:59–63

    Google Scholar 

  • Del Valle RA, Montalti D, Inbar M (2002) Mid-Holocene macrofossil-bearing raised marine beaches at Potter Peninsula, King George Island, South Shetland Islands. Antarct Sci 14:263–269

    Google Scholar 

  • Dickens W, Kuhn G, Leng M et al (1700s) Enhanced glacial discharge from the eastern Antarctic Peninsula since the 1700s associated with a positive Southern Annular Mode. Sci Rep 9:1–11

    CAS  Google Scholar 

  • Emslie SD (2001) Radiocarbon dates from abandoned penguin colonies in the Antarctic Peninsula region. Antarct Sci 13:289–295

    Google Scholar 

  • Emslie SD, Baumann K, van Tuinen M (2011) Late Holocene occupation of Gentoo Penguins (Pygoscelis papua) on Byers Peninsula, Livingston Island, Antarctica. Polar Biol 34:283–290

    Google Scholar 

  • Emslie SD, Coats L, Licht K (2007) A 45,000 yr record of Adélie penguins and climate change in the Ross Sea, Antarctica. Geology 35:61–64

    Google Scholar 

  • Emslie SD, Fraser W, Smith RC, Walker W (1998) Abandoned penguin colonies and environmental change in the Palmer Station area, Anvers Island, Antarctic Peninsula. Antarct Sci 10:257–268

    Google Scholar 

  • Emslie SD, McDaniel JD (2002) Adélie penguin diet and climate change during the middle to late Holocene in northern Marguerite Bay, Antarctic Peninsula. Polar Biol 25:222–229

    Google Scholar 

  • Emslie SD, McKenzie A, Marti LJ, Santos M (2018a) Recent occupation by Adelie penguins (Pygoscelis adeliae) at Hope Bay and Seymour Island and the ‘northern enigma’in the Antarctic Peninsula. Polar Biol 41:71–77

    Google Scholar 

  • Emslie SD, McKenzie A, Patterson WP (2018b) The rise and fall of an ancient Adélie penguin ‘supercolony’at Cape Adare. Antarctica R Soc Open Sci 5(4):172032

    PubMed  Google Scholar 

  • Emslie SD, Patterson WP (2007) Abrupt recent shift in δ13C and δ15N values in Adélie penguin eggshell in Antarctica. Proc Natl Acad Sci 104:11666–11669

    CAS  PubMed  Google Scholar 

  • Emslie SD, Polito M, Brasso R et al (2014) Ornithogenic soils and the paleoecology of pygoscelid penguins in Antarctica. Quat Int 352:4–15

    Google Scholar 

  • Emslie SD, Polito MJ, Patterson WP (2013) Stable isotope analysis of ancient and modern gentoo penguin egg membrane and the krill surplus hypothesis in Antarctica. Antarct Sci 25:213–218

    Google Scholar 

  • Emslie SD, Ritchie P, Lambert D (2003) Late-holocene penguin occupation and diet at King George Island Antarctic Peninsula. Antarct Penins Clim Var Hist Paleoenviron Perspect 79:171–180

    Google Scholar 

  • Hilton GM, Thompson DR, Sagar PM et al (2006) A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the rockhopper penguin Eudyptes chrysocome. Glob Change Biol 12:611–625

    Google Scholar 

  • Hinke JT, Cossio AM, Goebel ME et al (2017) Identifying risk: concurrent overlap of the Antarctic krill fishery with krill-dependent predators in the Scotia Sea. PLoS ONE 12:e0170132

    PubMed  PubMed Central  Google Scholar 

  • Hinke JT, Polito MJ, Goebel ME et al (2015) Spatial and isotopic niche partitioning during winter in chinstrap and Adélie penguins from the South Shetland Islands. Ecosphere 6:1–32

    Google Scholar 

  • Hobson KA, Piatt JF, Pitocchelli J (1994) Using stable isotopes to determine seabird trophic relationships. J Anim Ecol 63:786–798

    Google Scholar 

  • Hodgson D, Johnston N, Caulkett A, Jones V (1998) Palaeolimnology of Antarctic fur seal Arctocephalus gazella populations and implications for Antarctic management. Biol Conserv 83:145–154

    Google Scholar 

  • Huang T (2011) Relative changes in Krill Abundance inferred from Antarctic Fur Seal. PLoS ONE. https://doi.org/10.1371/journal.pone.0027331

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang T, Sun L, Long N et al (2013) Penguin tissue as a proxy for relative krill abundance in East Antarctica during the Holocene. Sci Rep 3:2807

    PubMed  PubMed Central  Google Scholar 

  • Huang T, Sun L, Stark J et al (2011) Relative Changes in Krill Abundance Inferred from Antarctic Fur Seal. PLoS ONE 6:e27331. https://doi.org/10.1371/journal.pone.0027331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hückstädt L, Burns J, Koch P et al (2012) Diet of a specialist in a changing environment: the crabeater seal along the western Antarctic Peninsula. Mar Ecol Prog Ser 455:287–301

    Google Scholar 

  • Hückstädt LA, McCarthy MD, Koch PL, Costa DP (2017) What difference does a century make? Shifts in the ecosystem structure of the Ross Sea, Antarctica, as evidenced from a sentinel species, the Weddell seal. Proc R Soc B Biol Sci 284:20170927

    Google Scholar 

  • Humphries G, Naveen R, Schwaller M et al (2017) Mapping application for penguin populations and projected dynamics (MAPPPD): data and tools for dynamic management and decision support. Polar Rec 53:160–166

    Google Scholar 

  • Juáres MA, Santos M, Mennucci JA et al (2016) Diet composition and foraging habitats of Adélie and gentoo penguins in three different stages of their annual cycle. Mar Biol 163:105

    Google Scholar 

  • Keeling C (1979) The suess effect: 13Carbon-14Carbon interrelations. Environ Int 2:229–300

    CAS  Google Scholar 

  • Laws RM (1977) Seals and whales of the Southern Ocean. Philos Trans R Soc Lond B 279:81–96

    Google Scholar 

  • Lorenzini S, Baroni C, Baneschi I et al (2014) Adélie penguin dietary remains reveal Holocene environmental changes in the western Ross Sea (Antarctica). Palaeogeogr Palaeoclimatol Palaeoecol 395:21–28. https://doi.org/10.1016/j.palaeo.2013.12.014

    Article  Google Scholar 

  • Lorenzini S, Baroni C, Fallick AE et al (2010) Stable isotopes reveal Holocene changes in the diet of Adélie penguins in Northern Victoria Land (Ross Sea, Antarctica). Oecologia 164:911–919

    PubMed  Google Scholar 

  • Lorenzini S, Olmastroni S, Pezzo F et al (2009) Holocene Adélie penguin diet in Victoria Land, Antarctica. Polar Biol 32:1077–1086

    Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140

    CAS  Google Scholar 

  • Montgomery JC, Foster BA, Milton RC, Carr E (1993) Spatial and temporal variations in the diet of nototheniid fish in McMurdo Sound, Antarctica. Polar Biol 13:429–431

    Google Scholar 

  • Mulvaney R, Abram NJ, Hindmarsh RC et al (2012) Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature 489:141

    CAS  PubMed  Google Scholar 

  • Pinkerton M, Forman J, Bury S et al (2013) Diet and trophic niche of Antarctic silverfish Pleuragramma antarcticum in the Ross Sea, Antarctica. J Fish Biol 82:141–164

    CAS  PubMed  Google Scholar 

  • Polito LHJ, Naveen R, Emslie SD (2011a) Stable isotopes reveal regional heterogeneity in the pre-breeding distribution and diets of sympatrically breeding Pygoscelis spp. penguins. Mar Ecol Prog Ser 421:265–277

    Google Scholar 

  • Polito M, Emsilie S, Walker W (2002) A1000-year record of Adélie penguin diets in the southern Ross Sea. Antarct Sci 14:327–332. https://doi.org/10.1017/S0954102002000184

    Article  Google Scholar 

  • Polito M, Fisher S, Tobias C, Emslie S (2009) Tissue-specific isotopic discrimination factors in gentoo penguin (Pygoscelis papua) egg components: implications for dietary reconstruction using stable isotopes. J Exp Mar Biol Ecol 372:106–112. https://doi.org/10.1016/j.jembe.2009.02.014

    Article  CAS  Google Scholar 

  • Polito MJ, Brasso RL, Trivelpiece WZ et al (2016) Differing foraging strategies influence mercury (Hg) exposure in an Antarctic penguin community. Environ Pollut 218:196–206

    CAS  PubMed  Google Scholar 

  • Polito MJ, Trivelpiece WZ, Karnovsky NJ et al (2011b) Integrating stomach content and stable isotope analyses to quantify the diets of pygoscelid penguins. PLoS ONE 6:e26642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Popp BN, Trull T, Kenig F et al (1999) Controls on the carbon isotopic composition of Southern Ocean phytoplankton. Glob Biogeochem Cycles 13:827–843

    CAS  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Scheffer V, Johnson A (1963) Molt in the northern fur seal. US Fish Wildl. Serv Spec Sci Rep Fish

  • Scheffer VB (1962) Pelage and surface topography of the northern fur seal. North Am Fauna 64:1–206

    Google Scholar 

  • Sigman DM, Karsh K, Casciotti K (2009) Ocean process tracers: nitrogen isotopes in the ocean

  • Stowasser G, Atkinson A, McGill R et al (2012) Food web dynamics in the Scotia Sea in summer: a stable isotope study. Deep Sea Res Part II Top Stud Oceanogr 59:208–221

    Google Scholar 

  • Syroechkovsky E (1959) The role of animals in the formation of primary soils under the conditions of circumpolar regions of the earth (Antarctica). Zool Zhurnal 38:1770–1775

    Google Scholar 

  • Tanaka T, Watanabe YW, Watanabe S et al (2003) Oceanic Suess effect of δ13C in subpolar region: the North Pacific. Geophys Res Lett. https://doi.org/10.1029/2003GL018503

    Article  Google Scholar 

  • Tatur A, Myrcha A, Niegodzisz J (1997) Formation of abandoned penguin rookery ecosystems in the maritime Antarctic. Polar Biol 17:405–417

    Google Scholar 

  • Trivelpiece WZ, Hinke JT, Miller AK et al (2011) Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc Natl Acad Sci 108:7625–7628

    CAS  PubMed  Google Scholar 

  • Vergani D, Coria N (1989) Increase in numbers of male fur seals Arctocephalus gazella during the summer autumn period at Mossman Peninsula (Laurie Island). Polar Biol 9:487–488

    Google Scholar 

  • Wilson R, Alvarrez B, Latorre L et al (1998) The movements of gentoo penguins Pygoscelis papua from Ardley Island, Antarctica. Polar Biol 19:407–413

    Google Scholar 

  • Zale R (1994) Changes in size of the Hope Bay Adélie penguin rookery as inferred from Lake Boeckella sediment. Ecography 17:297–304

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding from the Dalio Explore Fund which financed the Danger Island Expedition and the U.S. National Science Foundation Office of Polar Programs (ANT-1443585) for their support for data analysis. Thank you to the crew of the yacht M/V Hans Hansson D. Poncet, J. Hannequinn, A. Hazell and G. Hazell and to T. Hart, S. Jenouvrier, H. Lynch, H. Singh, A. Borowicz, P. McDowall, C. Youngflesh, T. Sayre-McCord, S. Forrest, and M. Rider for their assistance during the expedition. Thank you to W. Walker for assistance with hard prey remain identification and T. Mauney for assistance with stable isotope analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Polito.

Ethics declarations

Conflicts of interest

The authors report no conflicts of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1343 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalvakaalva, R., Clucas, G., Herman, R.W. et al. Late Holocene variation in the Hard prey remains and stable isotope values of penguin and seal tissues from the Danger Islands, Antarctica. Polar Biol 43, 1571–1582 (2020). https://doi.org/10.1007/s00300-020-02728-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-020-02728-w

Keywords

Navigation