Skip to main content
Log in

Broadband electroluminescence from reverse breakdown in individual suspended carbon nanotube pn-junctions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

There are various mechanisms of light emission in carbon nanotubes (CNTs), which give rise to a wide range of spectral emission characteristics that provide important information regarding the underlying physical processes that lead to photon emission. Here, we report spectra obtained from individual suspended CNT dual-gate field effect transistor (FET) devices under different gate and bias conditions. By applying opposite voltages to the gate electrodes (i.e., Vg1 = −Vg2), we are able to create a pn-junction within the suspended region of the CNT. Under forward bias conditions, the spectra exhibit a peak corresponding to E11 exciton emission via thermal (i.e., blackbody) emission occurring at electrical powers around 8 µW, which corresponds to a power density of approximately 0.5 MW/cm2. On the other hand, the spectra observed under reverse bias correspond to impact ionization and avalanche emission, which occurs at electrical powers of ~10 nW and exhibits a featureless flat spectrum extending from 1,600 nm to shorter wavelengths up to 600 nm. Here, the hot electrons generated by the high electric fields (~0.5 MV/cm) are able to produce high energy photons far above the E11 (ground state) energy. It is somewhat surprising that these devices do not exhibit light emission by the annihilation of electrons and holes under forward bias, as in a light emitting diode (LED). Possible reasons for this are discussed, including Auger recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghosh, S.; Bachilo, S. M.; Simonette, R. A.; Beckingham, K. M.; Weisman, R. B. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science2010, 330, 1656–1659.

    Article  CAS  Google Scholar 

  2. Miyauchi, Y.; Iwamura, M.; Mouri, S.; Kawazoe, T.; Ohtsu, M.; Matsuda, K. Brightening of excitons in carbon nanotubes on dimensionality modification. Nat. Photonics2013, 7, 715–719.

    Article  CAS  Google Scholar 

  3. Ma, X. D.; Adamska, L.; Yamaguchi, H.; Yalcin, S. E.; Tretiak, S.; Doorn, S. K.; Htoon, H. Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes. ACS Nano2014, 8, 10782–10789.

    Article  CAS  Google Scholar 

  4. Ma, X. D.; Hartmann, N. F.; Baldwin, J. K. S.; Doorn, S. K.; Htoon, H. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat. Nanotechnol.2015, 10, 671–675.

    Article  CAS  Google Scholar 

  5. Ma, X. D.; Baldwin, J. K. S.; Hartmann, N. F.; Doorn, S. K.; Htoon, H. Solid-state approach for fabrication of photostable, oxygen-doped carbon nanotubes. Adv. Fuct. Mater.2015, 25, 6157–6164.

    Article  CAS  Google Scholar 

  6. Ma, X. D.; James, A. R.; Hartmann, N. F.; Baldwin, J. K.; Dominguez, J.; Sinclair, M. B.; Luk, T. S.; Wolf, O.; Liu, S.; Doorn, S. K. et al. Solitary oxygen dopant emission from carbon nanotubes modified by dielectric metasurfaces. ACS Nano2017, 11, 6431–6439.

    Article  CAS  Google Scholar 

  7. Matsunaga, R.; Matsuda, K.; Kanemitsu, Y. Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy. Phys. Rev. Lett.2011, 106, 037404.

    Article  Google Scholar 

  8. Yuma, B.; Berciaud, S.; Besbas, J.; Shaver, J.; Santos, S.; Ghosh, S.; Weisman, R. B.; Cognet, L.; Gallart, M.; Ziegler, M. et al. Biexciton, single carrier, and trion generation dynamics in single-walled carbon nanotubes. Phys. Rev. B2013, 87, 205412.

    Article  Google Scholar 

  9. Högele, A.; Galland, C.; Winger, M.; Imamoğlu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett.2008, 100, 217401.

    Article  Google Scholar 

  10. He, X. W.; Hartmann, N. F.; Ma, X. D.; Kim, Y.; Ihly, R.; Blackburn, J. L.; Gao, W. L.; Kono, J.; Yomogida, Y.; Hirano, A. et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat. Photonics2017, 11, 577–582.

    Article  CAS  Google Scholar 

  11. Ju, S. Y.; Kopcha, W. P.; Papadimitrakopoulos, F. Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization. Science2009, 323, 1319–1323.

    Article  CAS  Google Scholar 

  12. Ishii, A.; Uda, T.; Kato, Y. K. Room-temperature single-photon emission from micrometer-long air-suspended carbon nanotubes. Phys. Rev. Appl.2017, 8, 054039.

    Article  Google Scholar 

  13. Hofmann, M. S.; Glückert, J. T.; Noé, J.; Bourjau, C.; Dehmel, R.; Högele, A. Bright, long-lived and coherent excitons in carbon nanotube quantum dots. Nat. Nanotechnol.2013, 8, 502–505.

    Article  CAS  Google Scholar 

  14. Walden-Newman, W.; Sarpkaya, I.; Strauf, S. Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes. Nano Lett.2012, 12, 1934–1941.

    Article  CAS  Google Scholar 

  15. Mueller, T.; Kinoshita, M.; Steiner, M.; Perebeinos, V.; Bol, A. A.; Farmer, D. B.; Avouris, P. Efficient narrow-band light emission from a single carbon nanotube p-n diode. Nat. Nanotechnol.2010, 5, 27–31.

    Article  CAS  Google Scholar 

  16. Misewich, J. A.; Martel, R.; Avouris; Tsang, J. C.; Heinze, S.; Tersoff, J. Electrically induced optical emission from a carbon nanotube FET. Science2003, 300, 783–786.

    Article  CAS  Google Scholar 

  17. Freitag, M.; Perebeinos, V.; Chen, J.; Stein, A.; Tsang, J. C.; Misewich, J. A.; Martel, R.; Avouris, P. Hot carrier electroluminescence from a single carbon nanotube. Nano Lett.2004, 4, 1063–1066.

    Article  CAS  Google Scholar 

  18. Chen, J.; Perebeinos, V.; Freitag, M.; Tsang, J.; Fu, Q.; Liu, J.; Avouris, P. Bright infrared emission from electrically induced excitons in carbon nanotubes. Science2005, 310, 1171–1174.

    Article  CAS  Google Scholar 

  19. Pfeiffer, M. H. P.; Stürzl, N.; Marquardt, C. W.; Engel, M.; Dehm, S.; Hennrich, F.; Kappes, M. M.; Lemmer, U.; Krupke, R. Electroluminescence from chirality-sorted (9,7)-semiconducting carbon nanotube devices. Opt. Express2011, 19, A1184–A1189.

    Article  CAS  Google Scholar 

  20. Liu, Z. W.; Bushmaker, A.; Aykol, M.; Cronin, S. B. Thermal emission spectra from individual suspended carbon nanotubes. ACS Nano2011, 5, 4634–4640.

    Article  CAS  Google Scholar 

  21. Wang, B.; Rezaeifar, F.; Chen, J. H.; Yang, S. S.; Kapadia, R.; Cronin, S. B. Avalanche photoemission in suspended carbon nanotubes: Light without Heat. ACS Photonics2017, 4, 2706–2710.

    Article  CAS  Google Scholar 

  22. Wang, B.; Yang, S. S.; Shen, L.; Cronin, S. B. Ultra-low power light emission via avalanche and sub-avalanche breakdown in suspended carbon nanotubes. ACS Photonics2018, 5, 4432–4436.

    Article  CAS  Google Scholar 

  23. Bushmaker, A. W.; Deshpande, V. V.; Bockrath, M. W.; Cronin, S. B. Direct observation of mode selective electron-phonon coupling in suspended carbon nanotubes. Nano Lett.2007, 7, 3618–3622.

    Article  CAS  Google Scholar 

  24. Hsu, I. K.; Pettes, M. T.; Aykol, M.; Shi, L.; Cronin, S. B. The effect of gas environment on electrical heating in suspended carbon nanotubes. J. Appl. Phys.2010, 108, 084307.

    Article  Google Scholar 

  25. Amer, M.; Bushmaker, A.; Cronin, S. Anomalous kink behavior in the current-voltage characteristics of suspended carbon nanotubes. Nano Res.2012, 5, 172–180.

    Article  CAS  Google Scholar 

  26. Bushmaker, A. W.; Deshpande, V. V.; Hsieh, S.; Bockrath, M. W.; Cronin, S. B. Direct observation of born-oppenheimer approximation breakdown in carbon nanotubes. Nano Lett.2009, 9, 607–611.

    Article  CAS  Google Scholar 

  27. Bushmaker, A. W.; Deshpande, V. V.; Hsieh, S.; Bockrath, M. W.; Cronin, S. B. Large modulations in the intensity of Raman-scattered light from pristine carbon nanotubes. Phys. Rev. Lett.2009, 103, 067401.

    Article  Google Scholar 

  28. Chang, S. W.; Theiss, J.; Hazra, J.; Aykol, M.; Kapadia, R.; Cronin, S. B. Photocurrent spectroscopy of exciton and free particle optical transitions in suspended carbon nanotube pn-junctions. Appl. Phys. Lett.2015, 107, 053107.

    Article  Google Scholar 

  29. Deshpande, V. V.; Chandra, B.; Caldwell, R.; Novikov, D. S.; Hone, J.; Bockrath, M. Mott insulating state in ultraclean carbon nanotubes. Science2009, 323, 106–110.

    Article  CAS  Google Scholar 

  30. Wang, B.; Yang, S. S.; Wang, Y.; Ahsan, R.; He, X. W.; Kim, Y.; Htoon, H.; Kapadia, R.; John, D. D.; Thibeault, B. et al. Auger suppression of incandescence in individual suspended carbon nanotube pn-junctions. ACS Appl. Mater. Interfaces2020, 12, 11907–11912.

    Article  CAS  Google Scholar 

  31. Chang, S. W.; Bergemann, K.; Dhall, R.; Zimmerman, J.; Forrest, S.; Cronin, S. B. Nonideal diode behavior and bandgap renormalization in carbon nanotube p-n junctions. IEEE Trans. Nanotechnol.2014, 13, 41–45.

    Article  CAS  Google Scholar 

  32. Freitag, M.; Steiner, M.; Naumov, A.; Small, J. P.; Bol, A. A.; Perebeinos, V.; Avouris, P. Carbon nanotube photo- and electroluminescence in longitudinal electric fields. ACS Nano2009, 3, 3744–3748.

    Article  CAS  Google Scholar 

  33. Steiner, M.; Freitag, M.; Perebeinos, V.; Naumov, A.; Small, J. P.; Bol, A. A.; Avouris, P. Gate-variable light absorption and emission in a semiconducting carbon nanotube. Nano Lett.2009, 9, 3477–3481.

    Article  CAS  Google Scholar 

  34. Yasukochi, S.; Murai, T.; Moritsubo, S.; Shimada, T.; Chiashi, S.; Maruyama, S.; Kato, Y. K. Gate-induced blueshift and quenching of photoluminescence in suspended single-walled carbon nanotubes. Phys. Rev. B2011, 84, 121409.

    Article  Google Scholar 

  35. Yoshida, M.; Popert, A.; Kato, Y. K. Gate-voltage induced trions in suspended carbon nanotubes. Phys. Rev. B2016, 93, 041402.

    Article  Google Scholar 

  36. Chynoweth, A. G.; McKay, K. G. Photon emission from avalanche breakdown in silicon. Phys. Rev.1956, 102, 369–376.

    Article  CAS  Google Scholar 

  37. Van Drieënhuizen, B. P.; Wolffenbuttel, R. F. Optocoupler based on the avalanche light emission in silicon. Sens. Actuators A: Phys.1992, 31, 229–240.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from the Northrop Grumman-Institute of Optical Nanomaterials and Nanophotonics (NG-ION2) (B. W.). This research was supported by the NSF Award No. CBET-1905357 (S. Y.) and Department of Energy DOE Award No. DE-FG02-07ER46376 (Y. W.). R. K. acknowledges funding from AFOSR Grant No. FA9550-16-1-0306 and National Science Foundation Award No. 1610604. R. A. acknowledges a USC Provost Graduate Fellowship. A portion of this work was carried out in the University of California Santa Barbara (UCSB) nanofabrication facility. This work was also carried out in part at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Science user facility. Y. L., S. K. D., and H. H. acknowledge partial support of the LANL LDRD program and Y. L. and H. H. acknowledge support from DOE BES FWP# LANLBES22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen B. Cronin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Yang, S., Wang, Y. et al. Broadband electroluminescence from reverse breakdown in individual suspended carbon nanotube pn-junctions. Nano Res. 13, 2857–2861 (2020). https://doi.org/10.1007/s12274-020-2941-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2941-3

Keywords

Navigation