Skip to main content

Advertisement

Log in

Submarine landslides on a carbonate platform slope: forward numerical modelling of mechanical stratigraphy and scenarios of failure precondition

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Slope failure and landslides are widespread on the submarine slopes of carbonate platforms. They represent a key component of their stratigraphic evolution and a major geohazard. Several Quaternary slope failures and mass transport complexes were identified on the western slope and margin of the Great Bahama Bank (GBB) platform. This study evaluates several hypotheses for the preconditions associated to these events, in relation with the stratigraphic and environmental history of the platform. The forward stratigraphic simulator Dionisos Flow™ allows the slope stratigraphic evolution to be reconstructed on a 2D platform-to-basin section at high temporal resolution according to the eustatic and environmental history of the last 1.7 Myr. The hydromechanical simulator A2 is applied on this high-resolution stratigraphic grid for computing the mechanical stratigraphy of the section, that is the spatiotemporal pore pressure and stress state distribution. The simulated precondition of the platform margin during glacial lowstands results from the combination of two factors: transient overpressure generation by lateral fluid flow from the emerged platform and the steepening stratigraphic trend of the platform. No significant pore fluid overpressure is generated under high sedimentation rates or as a result of shift in hydrostatic gradient during sea-level falls. Precondition in the lower slope is not achieved in this 2D simulation, with the horizontal stress distribution counteracting the effect of overpressure build-up. It is found that cemented levels in the lower slope succession do not represent a significant preconditioning factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alves TM (2015) Submarine slide blocks and associated soft-sediment deformation in deep-water basins: a review. Mar Pet Geol 67:262–285

    Google Scholar 

  • Arienzo MM, Swart PK, Pourmand A, Broad K, Clement AC, Murphy LN, Kakuk B (2015) Bahamian speleothem reveals temperature decrease associated with Heinrich stadials. Earth Planet Sci Lett 430:377–386

    Google Scholar 

  • Betzler C, Reijmer JJG, Bernet K, Eberli GP, Anselmetti FS (1999) Sedimentary patterns and geometries of the Bahamian outer carbonate ramp (Miocene-Lower Pliocene, Great Bahama Bank). Sedimentology 46(6):1127–1143

    Google Scholar 

  • Bonacci O, Ljubenkov I, Roje-Bonacci T (2006) Karst flash floods: an example from the Dinaric karst (Croatia). Nat Hazards Earth Syst Sci 6(2):195–203

    Google Scholar 

  • Borgomano JRF (2000) The upper cretaceous carbonates of the Gargano-Murge region, southern Italy: a model of platform-to-basin transition. AAPG Bulletin 84(10):1561–1588

  • Bouchez J, Caristan Y, Mariotti C (1997) Stabilité des pentes sous-marines de l'atoll de Mururoa sous sollicitations dynamiques. Rev Fr Géotech 78:3–13

    Google Scholar 

  • Bouziat A, Guy N, Frey J, Colombo D, Colin P, Cacas-Stentz MC, Cornu T (2019) An assessment of stress states in passive margin sediments: iterative hydro-mechanical simulations on basin models and implications for rock-failure predictions. Geosciences 2019(9):469. https://doi.org/10.3390/geosciences9110469

    Article  Google Scholar 

  • Brookfield ME, Blechschmidt I, Hannigan R, Coniglio M, Simonson B, Wilson G (2006) Sedimentology and geochemistry of extensive very coarse deepwater submarine fan sediments in the Middle Jurassic of Oman, emplaced by giant tsunami triggered by submarine mass flows. Sediment Geol 192(1–2):75–98

    Google Scholar 

  • Busson J, Joseph P, Mulder T, Teles V, Borgomano J, Granjeon D, Betzler C, Poli E, Wunsch M (2019) High-resolution stratigraphic forward modeling of a Quaternary carbonate margin: controls and dynamic of the progradation. Sediment Geol 379(2019):77–96

    Google Scholar 

  • Canals M, Lastras G, Urgeles R, Casamor JL, Mienert J, Cattaneo A, Bryn P (2004) Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the COSTA project. Mar Geol 213(1–4):9–72

    Google Scholar 

  • Carriere SD, Chalikakis K, Danquigny C, Davi H, Mazzilli N, Ollivier C, Emblanch C (2016) The role of porous matrix in water flow regulation within a karst unsaturated zone: an integrated hydrogeophysical approach. Hydrogeol J 24(7):1905–1918

    Google Scholar 

  • Caspard E, Rudkiewicz JL, Eberli GP, Brosse E, Renard M (2004) Massive dolomitization of a Messinian reef in the Great Bahama Bank: a numerical modelling evaluation of Kohout geothermal convection. Geofluids 4(1):40–60

    Google Scholar 

  • Chabaud L, Ducassou E, Tournadour E, Mulder T, Reijmer JJG, Conesa G, Ross L (2016) Sedimentary processes determining the modern carbonate periplatform drift of Little Bahama Bank. Mar Geol 378:213–229

    Google Scholar 

  • Chen M-P , Juang J-S, Ladd J, (1993) 42. Physical properties, compressional-wave velocity, and consolidation characteristics of slope sediments, Townsville Trough, northeastern Australia. In: McKenzie JA, Davies PJ, Palmer-Julson A, et al. (eds) Proc. ODP Sci. Results Leg 133.

  • Clare MA, Le Bas T, Price DM, Hunt JE, Sear D, Cartigny MJB, Vellinga A, Symons W, Firth C, Cronin S (2018) Complex and cascading triggering of submarine landslides and turbidity currents at volcanic islands revealed from integration of high-resolution onshore and offshore surveys. Front Earth Sci 6:223

    Google Scholar 

  • Crevello PD, Schlager W (1980) Carbonate debris sheets and turbidites, Exuma Sound, Bahamas. J Sediment Res 50(4):1121–1147

    Google Scholar 

  • Doligez B, Bessis F, Burrus F, Ungerer P, Chenet PY (1986) Integrated numerical simulation of the sediment heat transfer, hydrocarbon formation and fluid migration in a sedimentary basin: the Themis model. In: Burrus J (ed) Thermal modelling in sedimentary basins. Technip, Paris, pp 173–195

    Google Scholar 

  • Donders TH, de Boer HJ, Finsinger W et al (2011) Impact of the Atlantic Warm Pool on precipitation and temperature in Florida during North Atlantic cold spells. Clim Dyn 36:109–118

    Google Scholar 

  • Dugan B, Marone C, Hong T, and Migyanka M, (2004) Data report: compressibility, permeability, and grain size of shallow sediments, sites 1194 and 1198. In: Anselmetti FS, Isern AR, Blum P, and Betzler C (eds.), Proc. ODP Sci. Results Leg 194, 1–28

  • Eberli GP, Ginsburg RN (1987) Segmentation and coalescence of Cenozoic carbonate platforms, northwestern Great Bahama Bank. Geology 15:75–79

    Google Scholar 

  • Eberli GP (1988). 21. Physical properties of carbonate turbidite sequences surrounding the Bahamas – implication for slope stability and fluid movements. In: Austin J.A., Jr., Schlager, W. et al. (eds) Proc. ODP Sci. Results, Leg 101, 305-314.

  • Eberli GP, Swart PK, Malone MJ et al (1997) Proceedings of the Ocean Drilling Program, initial reports, 166. Ocean Drilling Program, College Station

    Google Scholar 

  • Eberli GP (2000) 16. The record of Neogene sea-level changes in the prograding carbonates along the Bahamas transect – Leg 166 synthesis. In Swart PK, Eberli GP, Malone MJ, and Sarg JF (eds.), Proc ODP Sci Results, Leg 166

  • Eberli GP, Anselmetti FS, Kenter JAM, McNeill DF, Melim LA, (2001). Calibration of seismic sequence stratigraphy with cores and logs. In Ginsburg R. N. (ed) Subsurface geology of a prograding carbonate platform margin, Great Bahama Bank: results of the Bahamas Drilling Project SEPM Special Publication 70.

  • Eberli GP, Anselmetti FS, Kroon D, Sato T, Wright JD (2002) The chronostratigraphic significance of seismic reflections along the Bahamas Transect. Mar Geol 185:1–17

    Google Scholar 

  • Eberli GP, Anselmetti FS, Betzler C, Van Konijnenburg J-H, Bernouilli D, (2004). Carbonate platform to basin transitions on seismic data and in outcrops: Great Bahama Bank and the Maiella Platform Margin, Italy. In: Eberli GP, Masaferro JL, Sarg JFR (eds) Seismic imaging of carbonate reservoirs and systems: AAPG Memoir 81, 207–250.

  • Engel M, Oetjen J, May SM, Brückner H (2016) Tsunami deposits of the Caribbean – towards an improved coastal hazard assessment. Earth-Sci Rev 163:260–296

    Google Scholar 

  • Faille I, Thibaut M, Cacas M-C, Havé P, Willien F, Wolf S, Agelas L, Pegaz-Fiornet S (2014) Modeling fluid flow in faulted basins. Oil Gas Sci Technol –Rev. IFP Energies nouvelles 69(4):529–553

    Google Scholar 

  • Fauquembergue K, Ducassou E, Mulder T, Hanquiez V, Perello MC, Poli E, Borgomano J (2018) Genesis and growth of a carbonate Holocene wedge on the northern Little Bahama Bank. Mar Pet Geol 96:602–614

    Google Scholar 

  • Ferry S, Flandrin J (1979) Mégabrèches de resédimentation, lacunes mécaniques et pseudo — « hard-grounds » sur la marge vocontienne au Barrémien et à l’Aptien inférieur (Sud-Est de la France). Géologie Alpine 55:75–92

    Google Scholar 

  • Festa A, Ogata K, Pini GA, Dilek Y, Alonso JL (2016) Origin and significance of olistostromes in the evolution of orogenic belts: a global synthesis. Gondwana Res 39:180–203

    Google Scholar 

  • Ford D, Williams P (2007) Karst hydrogeology and geomorphology. John Wiley & Sons Ltd., Hoboken

  • Ginsburg RN (2001). Subsurface geology of a prograding carbonate platform margin, Great Bahama Bank: results of the Bahamas Drilling Project. SEPM Special Publications 70.

  • Granjeon D, Joseph P (1999) Concepts and applications of a 3D multiple lithology, diffusive model in stratigraphic modeling. SEPM Spec Publ 62:197–210

    Google Scholar 

  • Granjeon D (2019) Use of high-performance stratigraphic forward modelling to improve siliciclastic and carbonate reservoir depositional architecture description. J Jap Ass Pet Tech 84(1):59–70

    Google Scholar 

  • Grimm EC, Watts WA, Jacobson GL, Hansen BCS, Almquist HR, Dieffenbacher-Krall AC (2006) Evidence for warm wet Heinrich events in Florida. Quat Sci Rev 25(17-18):2197–2211

    Google Scholar 

  • Guy N, Colombo D, Frey J, Cornu T, Cacas-Stentz MC (2019) Coupled modeling of sedimentary basin and geomechanics: a modified Drucker–Prager Cap model to describe rock compaction in tectonic context. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-019-01783-y

  • Hairabian A, Borgomano J, Masse JP, Nardon S (2015) 3-D stratigraphic architecture, sedimentary processes and controlling factors of Cretaceous deep-water resedimented carbonates (Gargano Peninsula, SE Italy). Sediment Geol 317:116–136

    Google Scholar 

  • Harbitz CB, Glimsdal S, Basin S, Zamora N, Smebye HC, Løvholt F, Bungum H, Gauer P, Kjekstad O (2012) Tsunami hazard in the Caribbean: regional exposure derived from credible worst case scenarios. Cont Shelf Res 38:1–23

    Google Scholar 

  • Hine AC, Locker SD, Tedesco LP, Mullins HT, Hallock P, Belknap DF, Gonzales JL, Neumann AC, Snyder SW (1992) Megabreccia shedding from modern, low-relief carbonate platforms, Nicaraguan Rise. Geol Soc Am Bull 104:928–943

    Google Scholar 

  • Hornbach MJ, Mann P, Taylor FW, Bowen S (2010) Estimating the age of near-shore carbonate slides using coral reefs and erosional markers: a case study from Curacao, Netherlands Antilles. Sediment Rec 8(1):4–10

    Google Scholar 

  • Janson X, Eberli GP, Lomando A and Bonnaffe F (2010) Seismic characterization of large- scale platform-margin collapse along the Zhujiang carbonate platform (Miocene) of the South China Sea, based on Miocene outcrop analogs from Mut Basin, Turkey. In: Morgan WA, George AD, Harris PM, Kupecz JA and Sarg JF (eds) Cenozoic carbonate systems of Australasia, Society for Sedimentary Geology, Special Publication 95, pp. 79–89

  • Janson X, Kerans C, Loucks R, Marhx MA, Reyes C, Murguia F (2011) Seismic architecture of a Lower Cretaceous platform-to-slope system, Santa Agueda and Poza Rica fields, Mexico. AAPG Bull 95(1):105–146

    Google Scholar 

  • Jo A, Eberli GP, Grasmueck M (2015) Margin collapse and slope failure along southwestern Great Bahama Bank. Sediment Geol 317:43–52

    Google Scholar 

  • Jones IC, Banner JL (2003) Hydrogeologic and climatic influences on spatial and interannual variation of recharge to a tropical karst island aquifer. Water Resour Res 39(9):1253

    Google Scholar 

  • Jourde H, Lafare A, Mazzilli N, Belaud G, Neppel L, Dörfliger N, Cernesson F (2014) Flash flood mitigation as a positive consequence of anthropogenic forcing on the groundwater resource in a karst catchment. Environ Earth Sci 71:573–583

    Google Scholar 

  • Kelner M, Migeon S, Tric E, Couboulex F, Dano A, Lebourg T, Taboada A (2016) Frequency and triggering of small-scale submarine landslides on decadal timescales: analysis of 4D bathymetric data from the continental slope offshore Nice (France). Mar Geol 379:281–297

    Google Scholar 

  • Kenter JAM, Ginsburg RN, Troelstra SR (2001) Sea-level-driven sedimentation patterns on the slope and margin. In: Ginsburg R. N. (ed) Subsurface geology of a prograding carbonate platform margin, Great Bahama Bank: results of the Bahamas Drilling Project. SEPM Special Publication No. 70.

  • Lafuerza S, Sultan N, Canals M, Frigola J, Bernet S, Jouet G, Sierro FJ (2009) Overpressure within upper continental slope sediments from CPTU data, Gulf of Lion, NW Mediterranean Sea. Int J Earth Sci 98(4):751–768

    Google Scholar 

  • Larson EB, Mylroie JE (2018) Diffuse versus conduit flow in coastal karst aquifers: the consequences of island area and perimeter relationships. Geosciences 8:268

    Google Scholar 

  • Lavoie D (1988) 22. Geotechnical properties of sediments in a carbonate-slope environment: Ocean Drilling Program site 630, northern Little Bahamas Bank. In: Austin JA Jr, Schlager W et al (eds) Proceedings of the Ocean Drilling Program, Scientific Results.

  • Lehrmann DJ, Minzoni M, Enos P, Kelleher C, Stepchinski L, Li X, Payne JL and Yu M (2020) Giant sector-collapse structures (scalloped margins) of the Yangtze Platform and Great Bank of Guizhou, China: implications for genesis of collapsed carbonate platform margin systems. Sedimentology. https://doi.org/10.1111/sed.12740

  • Lesparre N, Boudin F, Champollion C, Chéry J, Danquigny C, Seat HC, Cattoen M, Lizion F, Longuevergne L (2016) New insights on fractures deformation from tiltmeter data measured inside the Fontaine de Vaucluse karst system. Geophys J Int 208(3):1389–1402

    Google Scholar 

  • Leynaud D, Mulder T, Hanquiez V, Gonthier E, Régert A (2017) Sediment failure types, preconditions and triggering factors in the Gulf of Cadiz. Landslides 14:233–248

    Google Scholar 

  • Llopart J, Urgeles R, Forsberg CF, Camerlenghi A, Vanneste M, Rebesco M, Lucchi RG, Ruther DC, Lantzsch H (2019) Fluid flow and pore pressure development throughout the evolution of a trough mouth fan, western Barents Sea. Basin Res 31:487–513

    Google Scholar 

  • Manfrino C, Ginsburg RN (2001) Pliocene to Pleistocene depositional history of the upper platform margin. In: Ginsburg RN (ed) Subsurface geology of a prograding carbonate platform margin, Great Bahama Bank: results of the Bahamas Drilling Project. SEPM Special Publication No.70.

  • Masson DG, Harbitz CB, Wynn RB, Pedersen G, Løvholt F (2006) Submarine landslides: processes, triggers and hazard prediction. Philosophical Transactions. Series A Math Physical Eng Sci 364(1845):2009–2039

    Google Scholar 

  • Melim LA, Swart PK, Maliva RG, (2001). Meteoric and marine burial diagenesis in the subsurface of the Great Bahama Bank. In: Ginsburg RN (Ed.), Subsurface geology of a prograding carbonate platform margin, Great Bahama Bank. SEPM Spec. Publ. 70, 137–162

  • Michel J, Laugié M, Pohl A, Lanteaume C, Masse J-P, Donnadieu Y, Borgomano J (2019) Marine carbonate factories: a global model of carbonate platform distribution. Int J Earth Sci (Geol Rundsch) 108:1773–1792

    Google Scholar 

  • Miller KG, Mountain GS, Wright JD, Browning JV (2011) A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography 24(2):40–53

    Google Scholar 

  • Miramontes E, Garziglia S, Sultan N et al (2018) Morphological control of slope instability in contourites: a geotechnical approach. Landslides 15:1085–1095

    Google Scholar 

  • Moscardelli L, Wood L (2016) Morphometry of mass transport deposits as a predictive tool. GSA Bulletin (2016) 128(1–2):47–80

  • Mulder T, Ducassou E, Eberli GP, Hanquiez V, Gonthier E, Kindler P, Pakiades M (2012) New insights into the morphology and sedimentary processes along the western slope of Great Bahama Bank. Geology 40(7):603–606

    Google Scholar 

  • Mullins HT, Wise SW, Gardulski AF, Hinchey EJ, Masters PL, Siegel DI (1985) Shallow subsurface diagenesis of Pleistocene periplatform ooze: northern Bahamas. Sedimentology 32:473–494

    Google Scholar 

  • Munnecke A, Westphal H, Reijmer JGJ, Samtleben C (1997) Microspar development during early marine burial diagenesis: a comparison of Pliocene carbonates from the Bahamas with Silurian limestones from Gotland (Sweden). Sedimentology 44:977–999

    Google Scholar 

  • Mylroie JR, Mylroie JE (2007) Development of the carbonate island karst model. J Cave Karst Stud 69(1):59–75

    Google Scholar 

  • Nolting A, Zahm CK, Kerans C, Nikolinakou MA (2018) Effect of carbonate platform morphology on syndepositional deformation: insights from numerical modeling. J Struct Geol 115:91–102

    Google Scholar 

  • Payros A, Pujalte V, Orue-Etxebarria X (1999) The South Pyrenean Eocene carbonate megabreccias revisited: new interpretation based on evidence from the Pamplona Basin. Sediment Geol 125(3–4):165–194

    Google Scholar 

  • Piper D, Mosher D, Campbell D (2012) Controls on the distribution of major types of submarine landslides. In: Clague J, Stead D (eds) Landslides: types, mechanisms and modeling. Cambridge University Press, Cambridge, pp 95–107

    Google Scholar 

  • Principaud M, Mulder T, Gillet H, Borgomano J (2015) Large-scale carbonate submarine mass-wasting along the northwestern slope of the Great Bahama Bank (Bahamas): morphology, architecture, and mechanisms. Sediment Geol 317:27–42

    Google Scholar 

  • Principaud M, Ponte JP, Mulder T, Gillet H, Robin C, Borgomano J (2016) Slope-to-basin stratigraphic evolution of the northwestern Great Bahama Bank (Bahamas) during the Neogene to Quaternary: interactions between downslope and bottom currents deposits. Basin Res 29(6):699–724

    Google Scholar 

  • Principaud M, Mulder T, Hanquiez V, Ducassou E, Eberli G, Chabaud L, Borgomano J (2018) Recent morphology and sedimentary processes along the western slope of Great Bahama Bank (Bahamas). Sedimentology 65(6):2088–2116

    Google Scholar 

  • Puga-Bernabéu Á, Webster JM, Beaman RJ, Thran A, López-Cabrera J, and Daniell J (2020) Submarine landslides along the mixed siliciclastic-carbonate margin of the Great Barrier Reef (offshore Australia). In: Ogata K, Festa A, and Pini GA, (eds.) Submarine landslides: subaqueous mass transport deposits from outcrops to seismic profiles. Geophysical Monograph, 246. Wiley, Washington, pp. 313-337

  • Rankine WJ (1857) On the stability of loose earth. Philos Trans R Soc Lond 147:9–27

    Google Scholar 

  • Reijmer JJG, Mulder T, Borgomano J (2015) Carbonate slopes and gravity deposits. Sediment Geol 317:1–8

    Google Scholar 

  • Rendle RH, Reijmer JJG (2002) Quaternary slope development of the western, leeward margin of the Great Bahama Bank. Mar Geol 185(1–2):143–164

    Google Scholar 

  • Ritzi RW, Bukowski JM, Carney CK, Boardman MR (2001) Explaining the thinness of the fresh water lens in the Pleistocene carbonate aquifer on Andros Island, Bahamas. Groundwater 39:713–720

    Google Scholar 

  • Roche DM, Dokken TM, Goosse H, Renssen H, Weber SL (2007) Climate of the last glacial maximum: sensitivity studies and model-data comparison with the LOVECLIM coupled model. Clim Past. https://doi.org/10.5194/cp-3-205-2007

  • Rusciadelli G, Sciarra N, Mangifesta M (2003) 2D modelling of large-scale platform margin collapses along an ancient carbonate platform edge (Maiella Mt., Central Apennines, Italy): geological model and conceptual framework. Palaeogeogr Palaeoclimatol Palaeoecol 200(1–4):245–262

    Google Scholar 

  • Saller AH, Barton JW, and Barton RE, (1989), Slope sedimentation associated with a vertically building shelf, Bone Spring Formation, Mescalero Escarpe Field, southeastern New Mexico. In Crevello PD, Wilson JL, Sarg JF, and Read JF (eds.) Controls on carbonate platform and basin development: SEPM Special Publication, no. 44, 275-288.

  • Schlager W and Ginsburg RN (1981). Bahama carbonate platforms: the deep and the past. In: Cita MB and Ryan WBF (Eds), Carbonate platforms of the passive-type continental margins, present and past. Mar Geol 44: 1-24.

  • Schneider F, Wolf S, Faille I, Pot D (2000) A 3D basin model for hydrocarbon potential evaluation: application to Congo offshore. Oil Gas Sci Technol 55(1):3–13

    Google Scholar 

  • Schneider F, Potdevein JL, Wolf S, Faille I (1994) Modèle de compaction élastoplastique et viscoplastique pour simulateur de bassins sédimentaires. Revue de l’Institut Français du Pétrole 49(2):141–148

    Google Scholar 

  • Schnyder JSD, Eberli GP, Kirby JT, Fengyan S, Babak T, Thierry M, Emmanuelle D, Dierk H, Wintersteller P (2016) Tsunamis caused by submarine slope failures along western Great Bahama Bank. Nat Sci Rep 6:35925

    Google Scholar 

  • Scholz NA, Riedel M, Urlaub M, Spence GD, Hyndman RD (2016) Submarine landslides offshore Vancoucer Island along the northern Cascadia margin, British Columbia: why preconditioning is likely required to trigger slope failure. Geo-Mar Lett 36:323–337

    Google Scholar 

  • Shanmugam G (2015) The landslide problem. J Palaeogeogr 4(2):109–166

    Google Scholar 

  • Spence GH, Tucker ME (1997) Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: a review. Sediment Geol 112(3):163–193

    Google Scholar 

  • Steadmann DW, Alburyb NA, Brian Kakukc B, Meadde JI, Soto-Centenof JA, Singletona HM (2015) Vertebrate community on an ice-age Caribbean island. PNAS 112(44):E5963–E5971

    Google Scholar 

  • Stegmann S, Sultan N, Kopf AJ, Apprioual R, Pelleau P (2011) Hydrogeology and its effect on slope stability along the coastal aquifer of Nice. France Mar Geol 280:168–181

    Google Scholar 

  • Sultan N, Cochonat P, Canals M, Cattaneo A, Dennielou B, Haflidason H, Laberg JS, Long D, Mienert J, Trincardi F, Urgeles R, Vorren TO, Wilson C (2004) Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach. Mar Geol 213(1–4):291–321

    Google Scholar 

  • Ten Brink U, Geist LE, Andrews BD (2006) Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico. Geophys Res Lett 33(11):L11307

    Google Scholar 

  • Terry PT, Goff J (2013) One hundred and thirty years since Darwin: ‘reshaping’ the theory of atoll formation. Holocene 23(4):613–617

    Google Scholar 

  • Trofimovs J, Fisher JK, MacDonald HA, Talling PJ, Sparks RSJ, Hart MB, Smart CW, Boudon G, Deplus C, Komorowski J-C, Le Friant A, Moreton SG, Leng MJ (2010) Evidence for carbonate platform failure during rapid sea-level rise; ca 14 000 year old bioclastic flow deposits in the Lesser Antilles. Sedimentology 57(3):735–759

    Google Scholar 

  • Ungerer P, Burrus J, Doligez B, Bessis F (1990) Basin evaluation by integrated two-dimensional modeling of heat transfer, fluid flow, hydrocarbon generation and migration. AAPG Bull 74(3):309–335

    Google Scholar 

  • Urlaub M, Talling PJ, Masson DG (2013) Timing and frequency of large submarine landslides: implications for understanding triggers and future geohazard. Quat Sci Rev 72:63–82

    Google Scholar 

  • Urlaub M, Talling PJ, Zervos A, Masson D (2015) What causes large submarine landslides on low gradient (<2°) continental slopes with slow (∼0.15 m/kyr) sediment accumulation? J Geophys Res Solid Earth 120:6722–6739

    Google Scholar 

  • Urlaub M, Geersen J, Krastel S, Schwenk T (2018) Diatom ooze: crucial for the generation of submarine mega-slides. Geology 46(4):331–334

    Google Scholar 

  • Vanneste M, Sultan N, Garziglia S, Forsberg CF, L’Heureux JS (2014) Seafloor instabilities and sediment deformation processes: the need for integrated, multi-disciplinary investigations. Mar Geol 352:183–214

    Google Scholar 

  • Watson S, Whittaker J, Lucieer V, Coffin M, Lamarche G (2017) Erosional and depositional processes on the submarine flanks of Ontong Java and Nukumanu Atolls, western Equatorial Pacific Ocean. Mar Geol 392:122–139

    Google Scholar 

  • Whitaker FF, Smart PL (1997) Climatic control of hydraulic conductivity of Bahamian limestones. Groundwater, vol 35:5

    Google Scholar 

  • Webster JM, George NPJ, Beaman RJ, Hill J, Puga-Bernabéu Á, Hinestrosa G, Abbey EA, Daniell JJ (2016) Submarine landslides on the Great Barrier Reef shelf edge and upper slope: a mechanism for generating tsunamis on the north-east Australian coast? Mar Geol 371:120–129

    Google Scholar 

  • Wunsch M, Betzler C, Lindhorst S, Lüdmann T, Eberli GP (2017) Sedimentary dynamics along carbonate slopes (Bahamas Archipelago). Sedimentology 64:631–657

    Google Scholar 

  • Wunsch M, Betzler C, Eberli GP, Lindhorst S, Lüdmann T, Reijmer JJG (2018) Sedimentary dynamics and high-frequency sequence stratigraphy of the southwestern slope of Great Bahama Bank. Sediment Geol 363:96–117

    Google Scholar 

Download references

Acknowledgements

The authors thank Richard Fabre (Université de Bordeaux) for his kind help in the realisation of the oedometer trials. The authors thank also T. Cornu (TOTAL R&D) and M.C. Cacas-Steinz (IFP Energies Nouvelles) for the resources of the NOMBA Project.

Funding

This work has been sponsored by the TOTAL R&D in the « Carbonates project » and has been realised in the framework of the Research Chair « Sedimentology and reservoir modelling » funded by TOTAL at IFP School and owned by P. Joseph. J. Busson’s Ph.D. grant has also been funded by TOTAL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Busson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

$$ {P}^{\prime }=\frac{\left({\sigma}_{\mathrm{v}}^{\prime }+{\sigma}_{\mathrm{h}}^{\prime }+{\sigma}_{\mathrm{lat}}^{\prime}\right)}{3} $$
$$ Q=\frac{1}{\sqrt{2}}\sqrt{{\left(\sigma {\prime}_{\mathrm{h}}-\sigma {\prime}_{\mathrm{lat}}\right)}^2+{\left(\sigma {\prime}_v-\sigma {\prime}_{\mathrm{lat}}\right)}^2+{\left(\sigma {\prime}_{\mathrm{h}}-\sigma {\prime}_{\mathrm{v}}\right)}^2+3{\tau}_{xy}^2+3{\tau}_{yz}^2+3{\tau}_{xz}^2} $$

σh and σlat represent respectively the effective horizontal stress in the longitudinal direction of the 2D section and the effective horizontal stress in the orthogonal direction. σv corresponds to the vertical effective stress σv − ρwgz.

It can be deduced that in the oedometric condition, the deviatoric stress of the cell will be given by:

$$ {Q}_{\mathrm{oedo}}=3P^{\prime}\left|\raisebox{1ex}{$\left({K}_0-1\right)$}\!\left/ \!\raisebox{-1ex}{$2\left({K}_0+1\right)$}\right.\right| $$

With the lateral earth pressure coefficient:

$$ {K}_0=\frac{\sigma {\prime}_{\mathrm{h}}}{\sigma {\prime}_{\mathrm{v}}} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busson, J., Teles, V., Mulder, T. et al. Submarine landslides on a carbonate platform slope: forward numerical modelling of mechanical stratigraphy and scenarios of failure precondition. Landslides 18, 595–618 (2021). https://doi.org/10.1007/s10346-020-01510-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-020-01510-7

Keywords

Navigation