Skip to main content
Log in

Non-blind and Blind Deconvolution Under Poisson Noise Using Fractional-Order Total Variation

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In a wide range of applications such as astronomy, biology, and medical imaging, acquired data are usually corrupted by Poisson noise and blurring artifacts. Poisson noise often occurs when photon counting is involved in such imaging modalities as X-ray, positron emission tomography, and fluorescence microscopy. Meanwhile, blurring is also inevitable due to the physical mechanism of an imaging system, which can be modeled as a convolution of the image with a point spread function. In this paper, we consider both non-blind and blind image deblurring models that deal with Poisson noise. In the pursuit of high-order smoothness of a restored image, we propose a fractional-order total variation regularization to remove the blur and Poisson noise simultaneously. We develop two efficient algorithms based on the alternating direction method of multipliers, while an expectation-maximization algorithm is adopted only in the blind case. A variety of numerical experiments have demonstrated that the proposed algorithms can efficiently reconstruct piecewise smooth images degraded by Poisson noise and various types of blurring, including Gaussian and motion blurs. Specifically for blind image deblurring, we obtain significant improvements over the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Our codes are at https://github.com/mujib2020/Non-blind-and-Blind-Deconvolution-under-Poisson-noise.

  2. We download the Matlab package for RLTV from http://fxdupe.free.fr/software.html.

References

  1. Aljadaany, R., Pal, D.K., Savvides, M.: Douglas–Rachford networks: learning both the image prior and data fidelity terms for blind image deconvolution. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

  2. Almeida, M.S., Figueiredo, M.: Deconvolving images with unknown boundaries using the alternating direction method of multipliers. IEEE Trans. Image process. 22(8), 3074–3086 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Azzari, L., Foi, A.: Variance stabilization in Poisson image deblurring. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 728–731. IEEE (2017)

  4. Babacan, S.D., Molina, R., Katsaggelos, A.K.: Variational Bayesian blind deconvolution using a total variation prior. IEEE Trans. Image Process. 18(1), 12–26 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Bahmani, S., Romberg, J.: Lifting for blind deconvolution in random mask imaging: identifiability and convex relaxation. SIAM J. Imaging Sci. 8(4), 2203–2238 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Bajić, B., Lindblad, J., Sladoje, N.: Blind restoration of images degraded with mixed Poisson–Gaussian noise with application in transmission electron microscopy. In: International Symposium on Biomedical Imaging, pp. 123–127. IEEE (2016)

  7. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419–2434 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Bertero, M., Boccacci, P., Desiderà, G., Vicidomini, G.: Image deblurring with Poisson data: from cells to galaxies. Inverse Probl. 25(12), 123006 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Biggs, D.S., Andrews, M.: Acceleration of iterative image restoration algorithms. Appl. Opt. 36(8), 1766–1775 (1997)

    Google Scholar 

  10. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  11. Candès, E.J., Strohmer, T., Voroninski, V.: Phaselift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66(8), 1241–1274 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Carasso, A.S.: Direct blind deconvolution. SIAM J. Appl. Math. 61(6), 1980–2007 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numer. 25, 161–319 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Chan, R.H., Chan, T.F., Wong, C.: Cosine transform based preconditioners for total variation deblurring. IEEE Trans. Image Process. 8(10), 1472–1478 (1999)

    Google Scholar 

  15. Chan, R.H., Tao, M., Yuan, X.: Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM J. Imaging Sci. 6(1), 680–697 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Chan, T.F., Wong, C.: Total variation blind deconvolution. IEEE Trans. Image Process. 7(3), 370–375 (1998)

    Google Scholar 

  17. Cho, S., Lee, S.: Fast motion deblurring. In: ACM SIGGRAPH Asia 2009 Papers, pp. 1–8 (2009)

  18. Chowdhury, M.R., Zhang, J., Qin, J., Lou, Y.: Poisson image denoising based on fractional-order total variation. Inverse Probl. Imaging 14(1), 77 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–22 (1977)

    MathSciNet  MATH  Google Scholar 

  20. Dey, N., Blanc-Feraud, L., Zimmer, C., Roux, P., Kam, Z., Olivo-Marin, J., Zerubia, J.: Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microsoft Res. Technol. 69(4), 260–266 (2006)

    Google Scholar 

  21. Donatelli, M., Estatico, C., Martinelli, A., Serra-Capizzano, S.: Improved image deblurring with anti-reflective boundary conditions and re-blurring. Inverse Probl. 22(6), 2035 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Dupé, F.X., Fadili, M.J., Starck, J.L.: Image deconvolution under Poisson noise using sparse representations and proximal thresholding iteration. In: International Conference on Acquisition , Speech Signal Process, pp. 761–764. IEEE (2008)

  23. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. In: ACM Transactions on Graphics, vol. 25, pp. 787–794. ACM (2006)

  24. Figueiredo, M., Bioucas-Dias, J.: Restoration of Poissonian images using alternating direction optimization. IEEE Trans. Image Process. 19(12), 3133–3145 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Fish, D., Brinicombe, A., Pike, E., Walker, J.: Blind deconvolution by means of the Richardson–Lucy algorithm. J. Opt. Soc. Am. A 12(1), 58–65 (1995)

    Google Scholar 

  26. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

    MATH  Google Scholar 

  27. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. ESAIM Math. Model. Numer. Anal. 9(R2), 41–76 (1975)

    MATH  Google Scholar 

  28. Hansen, P.C., Nagy, J., O’leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering, vol. 3. SIAM, Philadelphia (2006)

    MATH  Google Scholar 

  29. He, T., Hu, J., Huang, H.: Hybrid high-order nonlocal gradient sparsity regularization for Poisson image deconvolution. Appl. Opt. 57(35), 10243–10256 (2018)

    Google Scholar 

  30. Huang, J., Huang, T.Z.: A nonstationary accelerating alternating direction method for frame-based Poissonian image deblurring. J. Comput. Appl. Math. 352, 181–193 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Hunt, B.R.: The application of constrained least squares estimation to image restoration by digital computer. IEEE Trans. Comput. 100(9), 805–812 (1973)

    Google Scholar 

  32. Hunter, D.R., Lange, K.: A tutorial on MM algorithms. Am. Stat. 58(1), 30–37 (2004)

    MathSciNet  Google Scholar 

  33. Jin, M., Roth, S., Favaro, P.: Normalized blind deconvolution. In: Proceedings of the European Conference on Computer Vision, pp. 668–684 (2018)

  34. Karush, W.: Minima of functions of several variables with inequalities as side constraints. M.Sc. Dissertation. Department of Mathematics, University of Chicago (1939)

  35. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 233–240. IEEE (2011)

  36. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, E. (ed.) Berkeley Symposium on Mathematics of Stats and Probability, pp. 481–492. University of California Press, Berkeley (1951)

  37. Kundur, D., Hatzinakos, D.: Blind image deconvolution. IEEE Signal Process. Mag. 13(3), 43–64 (1996)

    Google Scholar 

  38. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: Blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183–8192 (2018)

  39. Lai, W., Huang, J., Hu, Z., Ahuja, N., Yang, M.: A comparative study for single image blind deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1709 (2016)

  40. Landi, G., Piccolomini, E.L.: An efficient method for nonnegatively constrained total variation-based denoising of medical images corrupted by Poisson noise. Comput. Med. Imaging Graph. 36(1), 38–46 (2012)

    Google Scholar 

  41. Lange, K.: MM Optimization Algorithms, vol. 147. SIAM, Philadelphia (2016)

    MATH  Google Scholar 

  42. Le, T., Chartrand, R., Asaki, T.J.: A variational approach to reconstructing images corrupted by Poisson noise. J. Math. Imaging Vis. 27(3), 257–263 (2007)

    MathSciNet  Google Scholar 

  43. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2657–2664 (2011)

  44. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding blind deconvolution algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2354–2367 (2011)

    Google Scholar 

  45. Li, L., Pan, J., Lai, W.S., Gao, C., Sang, N., Yang, M.H.: Blind image deblurring via deep discriminative priors. Int. J. Comput. Vis. 127(8), 1025–1043 (2019)

    Google Scholar 

  46. Li, S., Tang, G., Wakin, M.B.: Simultaneous blind deconvolution and phase retrieval with tensor iterative hard thresholding. In: International Conference on Acoustics, Speech, and Signal Processing, pp. 2977–2981. IEEE (2019)

  47. Liu, H., Gu, J., Huang, C.: Image deblurring by generalized total variation regularization and least squares fidelity. In: International Conference on Information and Automation, pp. 1945–1949. IEEE (2016)

  48. Ljubenović, M., Figueiredo, M.A.: Blind image deblurring using class-adapted image priors. In: IEEE International Conference on Image Processing (ICIP), pp. 490–494 (2017)

  49. Lou, Y., Zhang, X., Osher, S.J., Bertozzi, A.L.: Image recovery via nonlocal operators. J. Sci. Comput. 42(2), 185–197 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Lucy, L.B.: An iterative technique for the rectification of observed distributions. Astrophys. J. 79, 745 (1974)

    Google Scholar 

  51. Ma, L., Moisan, L., Yu, J., Zeng, T.: A dictionary learning approach for Poisson image deblurring. IEEE Trans. Med. Imaging 32(7), 1277–1289 (2013)

    Google Scholar 

  52. McCallum, B.C.: Blind deconvolution by simulated annealing. Opt. Commun. 75(2), 101–105 (1990)

    Google Scholar 

  53. Perrone, D., Favaro, P.: A clearer picture of total variation blind deconvolution. IEEE Trans. Pattern Anal. Mach. Intell. 38(6), 1041–1055 (2015)

    Google Scholar 

  54. Prato, M., La Camera, A., Bonettini, S.: An alternating minimization method for blind deconvolution from poisson data. In: Journal of Physics: Conference Series, vol. 542, p. 012006. IOP Publishing (2014)

  55. Qin, J., Yi, X., Weiss, S.: A novel fluorescence microscopy image deconvolution approach. In: IEEE Intrnational Symposium Biomedical Imaging, pp. 441–444 (2018)

  56. Qin, J., Yi, X., Weiss, S., Osher, S.: Shearlet-TGV based fluorescence microscopy image deconvolution. UCLA CAM Report (14-32) (2014)

  57. Richardson, W.H.: Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. A 62(1), 55–59 (1972)

    MathSciNet  Google Scholar 

  58. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    MathSciNet  MATH  Google Scholar 

  59. Ruiz, P., Zhou, X., Mateos, J., Molina, R., Katsaggelos, A.K.: Variational Bayesian blind image deconvolution: A review. Dig. Sig. Process. 47, 116–127 (2015)

    MathSciNet  Google Scholar 

  60. Sawatzky, A., Brune, C., Kosters, T., Wubbeling, F., Burger, M.: EM-TV methods for inverse problems with Poisson noise. Level Set and PDE Based Reconstruction Methods in Imaging, Lecture Notes in Mathematics (2090), pp. 71–142 (2013)

  61. Schuler, C.J., Hirsch, M., Harmeling, S., Schölkopf, B.: Learning to deblur. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1439–1451 (2015)

    Google Scholar 

  62. Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Vis. Commun. Image R. 21(3), 193–199 (2010)

    Google Scholar 

  63. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. 27(3), 73 (2008)

    Google Scholar 

  64. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1(2), 113–122 (1982)

    Google Scholar 

  65. Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 769–777 (2015)

  66. Tikhonov, A.N., Goncharsky, A.V., Stepanov, V., Yagola, A.G.: Numerical Methods for the Solution of Ill-Posed Problems, vol. 328. Springer, Berlin (2013)

    MATH  Google Scholar 

  67. Vono, M., Dobigeon, N., Chainais, P.: Bayesian image restoration under Poisson noise and log-concave prior. In: International Conference on Acoustics, Speech, and Signal Processing, pp. 1712–1716. IEEE (2019)

  68. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Google Scholar 

  69. Xu, J., Chang, H.B., Qin, J.: Domain decomposition method for image deblurring. J. Comput. Appl. Math. 271, 401–414 (2014)

    MathSciNet  MATH  Google Scholar 

  70. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: European Conference on Computer Vision, pp. 157–170. Springer (2010)

  71. Yan, M., Chen, J., Vese, L.A., Villasenor, J., Bui, A., Cong, J.: EM + TV based reconstruction for cone-beam ct with reduced radiation. In: International Symposium on Visual Computing, pp. 1–10. Springer (2011)

  72. You, Y., Kaveh, M.: A regularization approach to joint blur identification and image restoration. IEEE Trans. Image Process. 5(3), 416–428 (1996)

    Google Scholar 

  73. You, Y., Kaveh, M.: Blind image restoration by anisotropic regularization. IEEE Trans. Image Process. 8(3), 396–407 (1999)

    Google Scholar 

  74. Zhang, J., Wei, Z., Xiao, L.: Adaptive fractional-order multi-scale method for image denoising. J. Math. Imaging Vis. 43(1), 39–49 (2012)

    MathSciNet  MATH  Google Scholar 

  75. Zhou, L., Tang, J.: Fraction-order total variation blind image restoration based on l1-norm. Appl. Math. Model. 51, 469–476 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifei Lou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Qin is supported by the NSF DMS-1941197. Lou acknowledges the NSF CAREER award DMS-1846690.

Appendix

Appendix

Based on the blind deconvolution model (23), we define the objective function

$$\begin{aligned} Q(u,h):=\Vert \nabla ^\alpha u\Vert _1+ \beta \langle h\circ u-{\bar{f}}\log (h\circ u), \mathbf {1}_{\varOmega }\rangle . \end{aligned}$$
(45)

The proof of Theorem 1 relies on the following two lemmas. Lemma 1 shows the decrease of the objective function values for the sequence generated by the EM algorithm (10). By switching u and h, we can show that \(Q(u,h^{k+1})\le Q(u,h^k)\) for any u. For a fixed h, Lemma 2 guarantees the FOTV-regularized objective function decreases with respect to u. Therefore, we have

$$\begin{aligned} Q(u^{k+1},h^{k+1})\le Q(u^k,h^{k+1})\le Q(u^k,h^k). \end{aligned}$$

It is obvious that the objective function \(Q(u,h)\ge 0\). Then it follows from the Bolzano–Weierstrass Theorem that there exists a convergent subsequence.

For the notational convenience, we assume uh are column vectors, define a matrix H such that \(Hu:=h\circ u\), and denote \((Hu)_i\) as the ith element of Hu. Therefore, we can rewrite the EM update (10) as

$$\begin{aligned} u^{k+1}_j = \frac{u_j^k}{\sum _i H_{ij}}\sum _i \frac{H_{ij}f_j}{(Hu^k)_i}. \end{aligned}$$
(46)

Lemma 1

Given f and H,  define

$$\begin{aligned} F(u):=\sum _i \Big ((Hu)_i - f_i \log (Hu)_i\Big ) \end{aligned}$$
(47)

For the sequence generated by (46), we have \(F(u^{k+1})\le F(u^k). \)

Proof

The proof follows the majorize-minimization (MM) framework [32, 41]. In particular, we define a surrogate function of F, denoted by \(G(u,u^k)\), which satisfies the following two conditions:

$$\begin{aligned} \begin{aligned}&F(u^k) = G(u^k,u^k)\\&F(u) \le G(u,u^k), \quad \forall u. \\ \end{aligned} \end{aligned}$$
(48)

If \(u^{k+1} = {{\,\mathrm{argmin}\,}}_u G(u,u^k),\) then

$$\begin{aligned} F(u^{k+1}) \le G(u^{k+1},u^k) \le G(u^k,u^k) = F(u^k), \end{aligned}$$

where the first inequality and the last equality are by definition in (48), and the second inequality is because that \(u^{k+1}\) minimizes \(G(u,u^k).\)

We consider

$$\begin{aligned} G(u,u^k) = \sum _{i} (Hu)_i - \sum _{i}f_i \sum _j\frac{H_{ij}u^k_j}{(Hu^k)_i} \log \left( \dfrac{H_{ij}u_j}{\frac{H_{ij}u^k_j}{(Hu^k)_i}}\right) .\nonumber \\ \end{aligned}$$
(49)

We will show G is a surrogate function for F and the EM update (46) minimizes \(G(u,u^k)\).

Simple calculations lead to \(G(u^k,u^k) = F(u^k)\). To show \(F(u)\le G(u,u^k)\), we define \( a_{ij} = \frac{ H_{ij} u_j^k}{(Hu^k)_i}. \) It is straightforward that \(a_{ij}\ge 0\) and \(\sum _j a_{ij}=1,\ \forall i.\) Then by Jensen’s inequality, we have \(\forall i,\)

$$\begin{aligned} \begin{aligned} \sum _j\frac{H_{ij}u^k_j}{(Hu^k)_i} \log \left( \dfrac{H_{ij}u_j}{\frac{H_{ij}u^k_j}{(Hu^k)_i}}\right) =&\sum _j a_{ij} \log \left( \dfrac{H_{ij}u_j}{a_{ij}}\right) \\ \le&\log (\sum _j H_{ij}u_j).\\ \end{aligned} \end{aligned}$$
(50)

Therefore, by definitions in (49) and (47), we have \(F(u)\le G(u,u^k)\), and hence, G is a surrogate function of F.

To show that the EM update (46) minimizes \( G(u,u^k)\), we take the gradient of \(G(u,u^k)\) with respect to u and set equal to zero, thus leading to

$$\begin{aligned} \sum _{i}H_{ij}- \frac{\sum _i f_i a_{ij}}{u_j} = 0. \end{aligned}$$
(51)

Therefore, we get

$$\begin{aligned} u_j = \frac{\sum _i f_i a_{ij}}{\sum _i H_{ij}} = \frac{u_j^k}{\sum _i H_{ij}}\sum _i \frac{H_{ij}f_j}{(Hu^k)_i}, \end{aligned}$$
(52)

which is equivalent to (46). By the MM framework, we have \(F(u^{k+1})\le F(u^k)\).\(\square \)

Lemma 2

Define an FOTV regularized objective function

$$\begin{aligned} E(u):=\Vert \nabla ^\alpha u\Vert _1+\beta \sum _i (Hu)_i - f_i \log ((Hu)_i), \end{aligned}$$
(53)

and consider the following iterative scheme

$$\begin{aligned} u^{k+1}= & {} {{\,\mathrm{argmin}\,}}_u \Vert \nabla ^\alpha u\Vert _1\nonumber \\&+ \beta \sum _j (\sum _i H_{ij}) (u_j - u_j^{k+\frac{1}{2}} \log u_j), \end{aligned}$$
(54)

with \(u^{k+\frac{1}{2}}\) defined by (46). We can show that \(E(u^{k+1})\le E(u^k).\)

Proof

Denote \(R(u) = \Vert \nabla ^\alpha u\Vert _1\). Since \(u^{k+1}\) is the optimal solution for (54), we have

$$\begin{aligned} \begin{aligned}&R(u^{k+1}) + \beta \sum _j (\sum _i H_{ij}) (u^{k+1}_j - u_j^{k+\frac{1}{2}} \log u_j^{k+1})\\&\quad \le R(u^k) +\beta \sum _j (\sum _i H_{ij}) (u_j^k - u_j^{k+\frac{1}{2}} \log u_j^k), \end{aligned} \end{aligned}$$

which implies that

$$\begin{aligned} \begin{aligned}&R(u^{k+1})-R(u^k)\\&\quad \le \beta \sum _j (\sum _i H_{ij}) \left( u_j^k-u_j^{k+1}+u_j^{k+\frac{1}{2}}\log \frac{u_j^{k+1}}{u_j^k}\right) \\&\quad =\beta \Big ( \sum _i\big ((Hu^k)_i-(Hu^{k+1})_i\big )\\&\qquad + \sum _j (\sum _i H_{ij})u_j^{k+\frac{1}{2}}\log \frac{u_j^{k+1}}{u_j^k}\Big ). \end{aligned} \end{aligned}$$
(55)

Using the definition of (46) and the inequality (55), we can compute

$$\begin{aligned} \begin{aligned}&\frac{1}{\beta }(E(u^{k+1}) - E(u^k))\\&\quad \le \sum _i f_i \log \left( \dfrac{(Hu^k)_i}{(Hu^{k+1})_i}\right) +\sum _{ij} f_i a_{ij}\log \frac{u_j^{k+1}}{u_j^{k}} \\&\quad \le \sum _i f_i \log \left( \dfrac{(Hu^k)_i}{(Hu^{k+1})_i}\right) +\sum _i f_i \log \left( \sum _j a_{ij}\frac{u_j^{k+1}}{u_j^k}\right) , \end{aligned}\nonumber \\ \end{aligned}$$
(56)

where the last inequality is from Jensen’s inequality and \(a_{ij} = \frac{ H_{ij} u_j^k}{(Hu^k)_i}\). Simple calculations show that

$$\begin{aligned} \sum _j a_{ij} \frac{u_j^{k+1}}{u_j^k} = \sum _j \frac{H_{ij}u_j^{k+1}}{(Hu^k)_i} = \frac{(Hu^{k+1})_i}{(Hu^k)_i}. \end{aligned}$$
(57)

Since \(f_i\ge 0,\) we get \(E(u^{k+1})-E(u^k)\le 0\) by plugging (57) into (56).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, M.R., Qin, J. & Lou, Y. Non-blind and Blind Deconvolution Under Poisson Noise Using Fractional-Order Total Variation. J Math Imaging Vis 62, 1238–1255 (2020). https://doi.org/10.1007/s10851-020-00987-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-020-00987-0

Keywords

Mathematics Subject Classification

Navigation