Skip to main content
Log in

Fine structure of the central brain in the octopod Eledone cirrhosa (Lamarck, 1798) (Mollusca–Octopoda)

  • Original Article
  • Published:
Invertebrate Neuroscience

Abstract

This study aims to investigate the fine structure of the different cell types in the central brain of Eledone cirrhosa; the organelles in the neurons and the glial cells; the glial hemolymph–brain barrier; the neuro-secretions and the relationships between glial and nerve cells. The brain is surrounded by a non-cellular neurilemma followed by a single layer of perilemmal cells. Ependymal cells, highly prismatic glial cells, astrocytes, oligodendrocytes and epithelial processes were observed. The perikarya of the neurons are filled with slightly oval nuclei with heterochromatin, a strongly tortuous ER, numerous mitochondria and Golgi apparatus with two types of vesicles. In the cellular cortex, glial cells are much less numerous than the neurons and they are located preferably at the border between perikarya and neuropil. Furthermore, they send many branching shoots between the surrounding neuron perikarya and the axons. The glial cytoplasmic matrix appears more electrodense than that of the neurons. Only few ribosomes are attached to the membranes of the ER; the vast majorities are free. In the perikarya of the glial cells, mitochondria, multi-vesicular bodies, various vacuoles and vesicles are present. The essential elements of the hemolymph–brain barrier are the endothelial cells with their tight junctions. The cytoplasm contains various vesicles and mitochondria. However, two other cell types are present, the pericytes and the astrocytes, which are of great importance for the function of the hemolymph–brain barrier. The cell–cell interactions between endothelial cells, pericytes and astrocytes are as close as no other cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott NWR, Maddock L (eds) (1995) Cephalopod neurobiology. Oxford University Press, Oxford

    Google Scholar 

  • Abbott NJ, Bundgaard M, Cserr HF (1981) Fine-structural evidence for a glial blood-brain barrier to protein in the cuttlefish, Sepia officinalis. J Physiol Lond 316:P52–P53

    Google Scholar 

  • Abbott N, Bundgaard M, Cserr HF (1985) Brain vascular volume, electrolytes and blood-brain interface in the cuttlefish Sepia officinalis (Cephalopoda). J Physiol 368:197–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adelman WJ, Gilbert DL (1990) Electrophysiology and biophysiscs of the squid giant axon. In: Gilbert D, Adelman H, Arnold J (eds) Squid as experimental animals. Plenum Press, New York, pp 93–132

    Google Scholar 

  • Akert K, Sandri C (1976) The fine structure of the perineural endothelium. Cell Tiss Res 165:281–295

    CAS  Google Scholar 

  • Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, Edsinger-Gonzales E et al (2015) The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature 524:220–224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Binnington KC, Lane NJ (1980) Perineurial and glial cells in the tick Boophilus microplus (Acarina: Ixodidae); freeze-fracture and tracer studies. J Neurocytol 9:343–362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boycott B (1961) The functional organization of the brain of the cuttlefish Sepia officinalis. Proc R Soc Lond B Biol Sci 153:503–534

    Google Scholar 

  • Budelmann BU, Young JZ (1984) The statocyst-oculomotor system of Octopus vulgaris: extraocular eye muscles, eye muscle nerves, statocyst nerves and the oculomotor centre in the central nervous system. Phil Trans R Soc Lond B 306:1127. https://doi.org/10.1098/rstb.1984.0084

    Article  Google Scholar 

  • Budelmann BU, Young JZ (1997) Brain pathways of the branchial nerves of Sepia and Loligo. Philos Trans R Soc Lond B(315):345–352

    Google Scholar 

  • Budelrnann B (1995) The cephalopod nervous system: What evolution has made of the molluscan design. In: Breidbach O, Kutsch W (eds) The nervous system of invertebrates: an evolutionary and comparative approach. Birkhauser Verlag, Basel, pp 115–138

    Google Scholar 

  • Buresi A, Andouche A, Navet S, Bassaglia Y, Bonnaud-Ponticelli L, Baratte S (2016) Nervous system development in cephalopods: how egg yolkrichness modifies the topology of the mediolateral patterning system. Dev Biol 415:143–156

    CAS  PubMed  Google Scholar 

  • Büssow H (1980) The astrocytes in the retina and optic nerve head of mammals: a special glia for the ganglion. Cell Tiss Res 206(3):367–378

    Google Scholar 

  • Butler A (2008) Evolution of the thalamus: a morphological and functional review. Thalamus Relat Syst 4:35–58

    Google Scholar 

  • Crone C (1986) The blood-brain barrier as a tight epithelium: where is information lacking? Ann N Y Acad Sci 481:174–185

    CAS  PubMed  Google Scholar 

  • David GB, Brown AW, Mallion KB (1961) On the Identity of the ‘Neurofibrils’, ‘Nissl complex’, ‘Golgi Apparatus’, and ‘Trophospongium’ in the Neurones of Vertebrates. Q J Microscop Sci 102(4):481–489

    Google Scholar 

  • de Lange RPJ, van Minnen J (1998) Localization of the neuropeptide APGWamide in gastropod molluscs by in situ hybridization and immunocytochemistry. Gen Comp Endocrinol 109(2):166–174

    PubMed  Google Scholar 

  • Di Cosmo A, Di Cristo C (1998) Neuropeptidergic control of the optic gland of Octopus vulgaris: FMRF-amide and GnRH immunoreactivity. J Comput Neurol 398(1):1–12

    Google Scholar 

  • Di Cristo C, De Lisa E, Di Cosmo A (2009) GnRH in the brain and ovary of Sepia officinalis. Peptides 30(3):531–537

    PubMed  Google Scholar 

  • Doreen E Ashhurst, Chapman JA (1962) An electron-microscope study of the cytoplasmic inclusions in the neurones of Locusta migratoria. Q J Microscop Sci 103(2):147–153

    Google Scholar 

  • Dunlop C, King N (2008) Cephalopods: Octopuses and cuttlefish for the home aquarium. Publications, Neptune City

    Google Scholar 

  • Farris SM (2013) Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom body elaboration in insects. Brain Behav Evol 82:9–18

    PubMed  Google Scholar 

  • Fernández-Rueda P, García-Flórez L (2007) Octopus vulgaris (Mollusca:Cephalopoda) fishery management assessment in Asturias (North-West Spain). Fish Res 83:351–354

    Google Scholar 

  • Froesch D (1974) The subpedunculate lobe of the octopus brain: Evidence for dual function. Brain Res 75(2):277–285

    CAS  PubMed  Google Scholar 

  • Gotow T, Hashimoto PH (1984) Plasma membrane organization of astrocytes in elasmobranchs with special reference to the brain barrier system. J Neurocytol 13:727–742

    CAS  PubMed  Google Scholar 

  • Gray EG (1970) The fine structure of the vertical lobe of octopus brain. Philos Trans R Soc Lond B(258):379–394

    Google Scholar 

  • Gray EG, Young JZ (1964) Electron microscopy of synaptic structure of Octopus brain. J Cell Biol 21:87–103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11:227–238

    CAS  PubMed  Google Scholar 

  • Haszprunar G, Wanninger A (2012) Molluscs. Curr Biol 22:510–514

    Google Scholar 

  • Hochner B, Shomrat T (2012) An embodied view of octopus neurobiology. Curr Biol 22:887–892

    Google Scholar 

  • Hochner B, Shomrat T (2014) The neurophysiological basis of learning and memory in an advanced invertebrate—the octopus. In: Darmaillacq A-S, Dickel L, Mather JA (eds) Cephalopods cognition. Cambridge University Press, Cambridge

    Google Scholar 

  • Holland LZ, Carvalho JE, Escriva H, Laudet V, Schubert M, Shimeld SM et al (2013) Evolution of bilaterian central nervous systems: a single origin? Evo Dev 4:27

    Google Scholar 

  • Jereb P, Roper CE (eds) (2005) Cephalopods of the World, an Annotated and illustrated Catalogue of Cephalopod Species Known to Date. Publicatios, Neptune City, p 1

    Google Scholar 

  • Kandel E, Schwartz J, Jessell T, Siegelbaum S, Hudspeth AJ (2012) Principles of neural science, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Keay J, Bridgham JT, Thornton JW (2006) The Octopus vulgaris estrogen receptor is a constitutive transcriptional activator: evolutionary and functional implications. Endocrinology 147(8):3861–3869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kettenmann H, Verkhratsky A (2008) Neuroglia: the 150 years after. Trends Neurosci 31:653–659

    CAS  PubMed  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2010) Physiology of microglia. Physiol Rev 91:461–553

    Google Scholar 

  • Lane NJ, Swales LS (1976) Interrelationships between Golgi, Gerl and synaptic vesicles in the nerve cells of insect and gastropod ganglia. J Cell Set 22:435–453

    CAS  Google Scholar 

  • Lane NJ, Treherne JE (1972) Studies on perineurial junctional complexes and the sites of uptake of microperoxidase and lanthanum in the cockroach central nervous system. Tiss Cell 4:427–436

    CAS  Google Scholar 

  • Lane NJ, Harrison JB, Bowerman RF (1981) A vertebrate-like blood-brain barrier, with intraganglionic blood channels and occluding junctions in the scorpion. Tiss Cell 13:557–576

    CAS  Google Scholar 

  • Moussa TA, Banhawy M (1958) Studies on the Nissl substance, neurofibrillae and intracellular trabeculae of insect neurones. J R Microsc Soc 78:114–119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima Y, Pappas GD, Bennett MVL (1965) The fine structure of the supramedullary neurons of the puffer fish, with special reference to endocellular and pericellular capillaries. Am J Anat 116:471–492

    CAS  PubMed  Google Scholar 

  • Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31:535–561

    CAS  PubMed  Google Scholar 

  • Nicholls JG, Kuffler SW (1964) Extracellular space as a pathway for exchange between blood and neurons in the central nervous system of the leech: ionic composition of glial cells and neurons. J Neurophysiol 27:645–671

    CAS  PubMed  Google Scholar 

  • Nixon M, Young JZ (2003) The Brains and Lives of Cephalopods. Oxford University Press, Oxford

    Google Scholar 

  • Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1:409–417

    CAS  PubMed  Google Scholar 

  • Perry CJ, Barron AB (2013) Neural mechanisms of reward in insects. Annu Rev Entomol 58:543–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plan, T. (1987). Functional neuroanatomy of sensory-motor lobes of the brain of Octopus vulgaris. Ph.D. thesis, University of Regensburg

  • Rechenbach A, Wolburg H (2005) Astrocytes and ependymal glia. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, New York

    Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richard L, Saint M, Stanley DC, Che C (1984) The glial cells of insects. Insect Ultrastruct 50:435–475

    Google Scholar 

  • Shigeno S, Ragsdale CW (2015) The gyri of the octopus vertical lobe have distinct neurochemical identities. J Comput Neurol 523:1297–1317

    CAS  Google Scholar 

  • Shomrat T, Zarrella I, Fiorito G, Hochner B (2008) The octopus vertical lobe modulates short-term learning rate and uses LTP to acquire long-term memory. Curr Biol 18:337–342

    CAS  PubMed  Google Scholar 

  • Simons M, Trajkovic K (2006) Neuron-glia communication in the control of oligodendrocyte function and myelin biogenesis. J Cell Sci 119:4381–4389

    CAS  PubMed  Google Scholar 

  • Stephens PR, Young JZ (1969) The glio-vascular system of, cephalopods. Philos Trans R Soc Lon B(255):1–11

    Google Scholar 

  • Sun B, Tsai S (2011) Agonadotropin-releasing hormone-like molecule modulates the activity of diverse central neurons in a gastropod mollusk, Aplysia californica. Front Endocrinol 2(36):1–8

    Google Scholar 

  • Verkhratsky A, Parpura V, Rodriguez JJ (2010) Where the thoughts dwell: the physiology of neuronal-glial “diffuse neural net. Brain Res Rev 66(1–2):133–151

    PubMed  Google Scholar 

  • Waddell S (2013) Reinforcement signalling in Drosophila; dopamine does it all after all. Curr Opin Neurobiol 23:324–329

    CAS  PubMed  Google Scholar 

  • Wentzell MM, Martínez-Rubio C, Miller MW, Murphy AD (1987) Functional receptors for neurotransmitters on astroglial cells. Neuroscience 22:381–394

    Google Scholar 

  • Williamson R, Chrachri A (2004) Cephalopod neural networks. Neurosignals 13:87–98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young JZ (1965) The central nervous system of Nautilus. Philos Trans R Soc Lond B(249):1–25

    Google Scholar 

  • Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris. Clarendon Press, Oxford

    Google Scholar 

  • Young JZ (1974) The central nervous system of Loligo. I. The optic lobe. Philos Trans R Soc Lond 5(267):263–302

    Google Scholar 

  • Young JZ (1976) The nervous system of Loligo. II. Suboesophageal centres. Philos Trans R Soc Lond. 5(274):101–167

    Google Scholar 

  • Young JZ (1977) The nervous system of Loligo. III. Higher motor centres: the basal supraoesophageal lobes. Philos Trans R Soc Lond 5(276):351–398

    Google Scholar 

  • Young JZ (1979) The nervous system of Loligo. Y. The vertical lobe complex. Philos Trans R Soc Lond 5(295):311–354

    Google Scholar 

  • Young JZ (1988) Evolution of the cephalopod brain. In: Clarke MR, Trueman ER (eds) The Mollusca, vol 12. Paleontology and Neontology of Cephalopods. Elsevier, Amsterdam, pp 215–228

    Google Scholar 

Download references

Acknowledgement

The author of this manuscript thanks Alexandria University, Faculty of Science, Zoology department for supporting this article. There was no external funding for this research. Ethical clearance for this study was obtained from Alexandria University ethics committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ibrahim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, G. Fine structure of the central brain in the octopod Eledone cirrhosa (Lamarck, 1798) (Mollusca–Octopoda). Invert Neurosci 20, 15 (2020). https://doi.org/10.1007/s10158-020-00250-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10158-020-00250-6

Keywords

Navigation