Skip to main content
Log in

Assessing Stretched-Vortex Subgrid-Scale Models in Finite Volume Methods for Unbounded Turbulent Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Simulations of complex, compressible, high-Reynolds-number flows require high-fidelity physics and turbulence models to be appropriately coupled with strong numerical regularization methods. Obtaining grid-independent and scheme-independent solutions of these flows when using both explicit turbulence models and additional numerical regularization is especially important for further testing and development of accurate physics models. To this end, the current study investigates the interaction between the stretched-vortex subgrid-scale model and both the fourth-order piecewise parabolic limiter and a fifth-order upwinding interpolation (or hyperviscosity). It is demonstrated that computing the subgrid-scale kinetic energy estimate for the stretched-vortex model at a coarser resolution than the base mesh provides results which are independent of the use of numerical regularization techniques. This is shown to be the case for a temporally-evolving shear-layer, the inviscid Taylor–Green vortex problem, and a decaying, homogeneous turbulent flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bull, J.R., Jameson, A.: Simulation of the compressible Taylor Green vortex using high-order flux reconstruction schemes. In: 7th AIAA Theoretical Fluid Mechanics Conference, AIAA 2014-3210. AIAA Aviation Forum (2014)

  • Chaplin, C., Colella, P.: A single-stage flux-corrected transport algorithm for high-order finite-volume methods. Commun. Appl. Math. Comput. Sci. 12(1), 1–24 (2017). https://doi.org/10.2140/camcos.2017.12.1

    Article  MathSciNet  MATH  Google Scholar 

  • Chung, D., Matheou, G.: Large-eddy simulation of stratified turbulence. Part i: a vortex-based subgrid-scale model. J. Atmosp. Sci. 71, 1863–1879 (2014)

    Article  Google Scholar 

  • Chung, D., Pullin, D.I.: Large-eddy simulation and wall modelling of turbulent channel flow. J. Fluid Mech. 631, 281–309 (2009)

    Article  MathSciNet  Google Scholar 

  • Chung, D., Pullin, D.I.: Direct numerical simulation and large-eddy simulation of stationary buoyancy-driven turbulence. J. Fluid Mech. 643, 279–308 (2010)

    Article  MathSciNet  Google Scholar 

  • Colella, P., Graves, D.T., Keen, N., Ligocki, T.J., Martin, D.F., McCorquodale, P., Modiano, D., Schwartz, P., Sternberg, T., Straalen, B.V.: Chombo Software Package for AMR Applications: Design Document. Lawrence Berkeley National Laboratory (2009). https://seesar.lbl.gov/anag/chombo/ChomboDesign-3.0.pdf

  • Colella, P., Sekora, M.: A limiter for PPM that preserves accuracy at smooth extrema. J. Comput. Phys. 227(15), 7069–7076 (2008)

    Article  MathSciNet  Google Scholar 

  • Colella, P., Woodward, P.R.: The piecewise parabolic method PPM for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984)

    Article  Google Scholar 

  • Comte-Bellot, G., Corrsin, S.: Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated, ’isotropic’ turbulence. J. Fluid Mech. 48, 273–337 (1971)

    Article  Google Scholar 

  • de Wiart, C.C., Hillewaert, K., Bricteux, L., Winckelmans, G.: Implicit LES of free and wall-bounded turbulent flows based on the discontinous Galerkin/symmetric interior penalty method. Int. J. Numer. Method. Fluids 78, 335–354 (2015)

    Article  Google Scholar 

  • Fernandez, P., Nguyen, N.C., Peraire, J.: The hybridized discontinuous Galerkin method for implicit Large-Eddy Simulation of transitional turbulent flows. J. Comput. Phys. 336, 308–329 (2017)

    Article  MathSciNet  Google Scholar 

  • Gao, X., Guzik, S.M.J., Colella, P.: Fourth order boundary treatment for viscous fluxes on Cartesian grid finite-volume methods. AIAA 2014-1277, 52nd AIAA Aerospace Sciences Meeting (2014)

  • Gao, X., Owen, L.D., Guzik, S.M.J.: A parallel adaptive numerical method with generalized curvilinear coordinate transformation for compressible Navier–Stokes equations. Int. J. Numer. Meth. Fluids 82, 664–688 (2016)

    Article  MathSciNet  Google Scholar 

  • Gao, W., Zhang, W., Cheng, W., Samtaney, R.: Wall-modeled large-eddy simulation of turbulent flow past airfoils. J. Fluid Mech. 873, 174–210 (2019)

    Article  MathSciNet  Google Scholar 

  • Grinstein, F.F., Margolin, L.G., Rider, W.J.: Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, 1st edn. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  • Guzik, S.M., Gao, X., Owen, L.D., McCorquodale, P., Colella, P.: A freestream-preserving fourth-order finite-volume method in mapped coordinates with adaptive-mesh refinement. Comput. Fluids 123, 202–217 (2015)

    Article  MathSciNet  Google Scholar 

  • Guzik, S.M., Gao, X., Olschanowsky, C.: A high-performance finite-volume algorithm for solving partial differential equations governing compressible viscous flows on structured grids. Comput. Math Appl. 72, 2098–2118 (2016)

    Article  MathSciNet  Google Scholar 

  • Hearst, R.J., Lavoie, P.: The effect of active grid initial conditions on high Reynolds number turbulence. Exp. Fluids 56(10), 185 (2015)

    Article  Google Scholar 

  • Hill, D.J., Pantano, C., Pullin, D.I.: Large-eddy simulation and multi-scale modelling of a Richtmyer–Meshkov instability with reshock. J. Fluid Mech. 557, 29–61 (2006)

    Article  MathSciNet  Google Scholar 

  • Jackson, T.L., Grosch, C.E.: Absolute/convective instabilities and the convective mach number in a compressible mixing layer. Tech. rep, NASA (1989)

  • Kang, H.S., Chester, S., Meneveau, C.: Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation. J. Fluid Mech. 480, 129–160 (2003)

    Article  MathSciNet  Google Scholar 

  • Karaca, M., Lardjane, N., Fedioun, I.: Implicit Large Eddy Simulation of high-speed non-reacting and reacting air/H\(_2\) jets with a 5th order WENO scheme. Comput. Fluids 62, 25–44 (2012)

    Article  MathSciNet  Google Scholar 

  • Kosovic, B., Pullin, D.I., Samtaney, R.: Subgrid-scale modeling for large-eddy simulations of compressible turbulence. Phys. Fluids 14(4), 1511–1522 (2002)

    Article  Google Scholar 

  • Lundgren, T.S.: Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25(12), 2193–2203 (1982)

    Article  Google Scholar 

  • Mattner, T.W.: A refined stretched-vortex model for large-eddy simulation of turbulent mixing layers. Tech. rep., In: 17th Australasian Fluid Mechanics Conference (2010)

  • Mattner, T.W.: Large-eddy simulations of turbulent mixing layers using the stretched vortex model. J. Fluid Mech. 671, 507–534 (2011)

    Article  MathSciNet  Google Scholar 

  • McCorquodale, P., Colella, P.: A high-order finite-volume method for conservation laws on locally refined grids. Commun. Appl. Math. Comput. Sci. 6(1), 1–25 (2011)

    Article  MathSciNet  Google Scholar 

  • Misra, A., Pullin, D.I.: A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids 9(8), 2443–2454 (1997)

    Article  MathSciNet  Google Scholar 

  • Moura, R.C., Mengaldo, G., Peiro, J., Sherwin, S.J.: On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES/under-resolved DNS of Euler turbulence. J. Comput. Phys. 330, 615–623 (2017)

    Article  MathSciNet  Google Scholar 

  • Owen, L.D., Guzik, S.M., Gao, X.: A high-order adaptive algorithm for multispecies gaseous flows on mapped domains. Comput. Fluids 170, 249–260 (2018)

    Article  MathSciNet  Google Scholar 

  • Pantano, C., Sarkar, S.: A study of compressibility effect in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329–371 (2002)

    Article  Google Scholar 

  • Pope, S.B.: Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6, 1–24 (2004). https://doi.org/10.1088/1367-2630/6/1/035

    Article  MathSciNet  Google Scholar 

  • Rozema, W., Bae, H.J., Moin, P., Verstappen, R.: Minimum-dissipation models for large-eddy simulation. Phys. Fluids 27, 085107 (2015)

    Article  Google Scholar 

  • Sagaut, P.: Large Eddy Simulation for Incompressible Flows: An Introduction, 3rd edn. Springer, Berlin (1998)

    MATH  Google Scholar 

  • Shetty, D.A., Frankel, S.H.: Assessment of stretched vortex subgrid-scale models for LES of incompressible inhomogeneous turbulent flows. Int. J. Numer. Meth. Fluids 73, 152–171 (2013)

    Article  MathSciNet  Google Scholar 

  • Skeledzic, T., Krauss, J., Lienhart, H., Ertunc, Ö., Jovanovic, J.: Characterization of turbulence generated by an active grid with individually controllable paddles. In: New Results in Numerical and Experimental Fluid Mechanics XI, pp. 105–114. Springer International Publishing, Cham (2018)

  • Voelkl, T., Pullin, D.I., Chan, D.C.: A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation. Phys. Fluids 12(7), 1810–1825 (2000)

    Article  MathSciNet  Google Scholar 

  • Walters, S., Guzik, S., Gao, X.: Evaluation of the stretched-vortex subgrid-scale model for large-eddy simulation with a fourth-order finite volume algorithm. In: 2019 AIAA SciTech Forum, AIAA 2019-1886. https://doi.org/10.2514/6.2019-1886

Download references

Acknowledgements

The authors would like to acknowledge insightful discussions with Dr. Phillip Colella that contributed towards the methodologies proposed in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Walters.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This research was supported by Department of Defense United States Air Force (DOD-USAF-Air Force) under the Award Number FA9550-18-1-0057. This material is partly based upon work at Lawrence Berkeley National Laboratory (LBNL) supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under Contract Number DE-AC02-05CH11231. This research was supported by the National Science Foundation under the Award Number 1723191.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walters, S., Gao, X., Johansen, H. et al. Assessing Stretched-Vortex Subgrid-Scale Models in Finite Volume Methods for Unbounded Turbulent Flows. Flow Turbulence Combust 106, 945–969 (2021). https://doi.org/10.1007/s10494-020-00206-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-020-00206-1

Keywords

Navigation