Skip to main content
Log in

Attractors for Stochastic Reaction-Diffusion Equation with Additive Homogeneous Noise

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We study the asymptotic behaviour of solutions of a reaction-diffusion equation in the whole space ℝd driven by a spatially homogeneous Wiener process with finite spectral measure. The existence of a random attractor is established for initial data in suitable weighted L2-space in any dimension, which complements the result from P. W. Bates, K. Lu, and B. Wang (2013). Asymptotic compactness is obtained using elements of the method of short trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Arnold: Random Dynamical Systems. Springer Monographs in Mathematics, Springer, Berlin, 1998.

    Book  Google Scholar 

  2. J. M. Arrieta, A. Rodriguez-Bernal, J. W. Cholewa, T. Dlotko: Linear parabolic equations in locally uniform spaces. Math. Models Methods Appl. Sci. 14 (2004), 253–293.

    Article  MathSciNet  Google Scholar 

  3. P. W. Bates, H. Lisei, K. Lu: Attractors for stochastic lattice dynamical systems. Stoch. Dyn. 6 (2006), 1–21.

    Article  MathSciNet  Google Scholar 

  4. P. W. Bates, K. Lu, B. Wang: Tempered random attractors for parabolic equations in weighted spaces. J. Math. Phys. 54 (2013), Article ID 081505, 26 pages.

  5. Z. Brzezniak: On Sobolev and Besov spaces regularity of Brownian paths. Stochastics Stochastics Rep. 56 (1996), 1–15.

    Article  MathSciNet  Google Scholar 

  6. Z. Brzezniak: On stochastic convolution in Banach spaces and applications. Stochastics Stochastics Rep. 61 (1997), 245–295.

    Article  MathSciNet  Google Scholar 

  7. Z. Brzezniak, Y. Li: Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains. Trans. Am. Math. Soc. 358 (2006), 5587–5629.

    Article  MathSciNet  Google Scholar 

  8. Z. Brzezniak, S. Peszat: Space-time continuous solutions to SPDE’s driven by a homogeneous Wiener process. Stud. Math. 137 (1999), 261–299.

    Article  MathSciNet  Google Scholar 

  9. Z. Brzezniak, J. van Neerven: Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise. J. Math. Kyoto Univ. 43 (2003), 261–303.

    Article  MathSciNet  Google Scholar 

  10. T. Caraballo, J. A. Langa, V. S. Melnik, J. Valero: Pullback attractors of nonautonomous and stochastic multivalued dynamical systems. Set-Valued Anal. 11 (2003), 153–201.

    Article  MathSciNet  Google Scholar 

  11. J. W. Cholewa, T. Dlotko: Cauchy problems in weighted Lebesgue spaces. Czech. Math. J. 54 (2004), 991–1013.

    Article  MathSciNet  Google Scholar 

  12. H. Crauel, A. Debussche, F. Flandoli: Random attractors. J. Dyn. Differ. Equations 9 (1997), 307–341.

    Article  MathSciNet  Google Scholar 

  13. H. Crauel, F. Flandoli: Attractors for random dynamical systems. Probab. Theory Relat. Fields 100 (1994), 365–393.

    Article  MathSciNet  Google Scholar 

  14. G. Da Prato, J. Zabczyk: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications 152, Cambridge University Press, Cambridge, 2014.

    Book  Google Scholar 

  15. D. A. Dawson, H. Salehi: Spatially homogeneous random evolutions. J. Multivariate Anal. 10 (1980), 141–180.

    Article  MathSciNet  Google Scholar 

  16. E. Feireisl: Bounded, locally compact global attractors for semilinear damped wave equations on RN. Differ. Integral Equ. 9 (1996), 1147–1156.

    MATH  Google Scholar 

  17. F. Flandoli, B. Schmalfuss: Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise. Stochastics Stochastics Rep. 59 (1996), 21–45.

    Article  MathSciNet  Google Scholar 

  18. I. M. Gel’fand, N. Y. Vilenkin: Generalized Functions. Vol. 4. Applications of Harmonic Analysis. Academic Press, New York, 1964.

    MATH  Google Scholar 

  19. M. Grasselli, D. Pražák, G. Schimperna: Attractors for nonlinear reaction-diffusion systems in unbounded domains via the method of short trajectories. J. Differ. Equations 249 (2010), 2287–2315.

    Article  MathSciNet  Google Scholar 

  20. D. Haroske, H. Triebel: Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators. I. Math. Nachr. 167 (1994), 131–156.

    Article  MathSciNet  Google Scholar 

  21. J. Málek, D. Prazák: Large time behavior via the method of l-trajectories. J. Differ. Equations 181 (2002), 243–279.

    Article  MathSciNet  Google Scholar 

  22. M. Ondreját: Existence of global mild and strong solutions to stochastic hyperbolic evolution equations driven by a spatially homogeneous Wiener process. J. Evol. Equ. 4 (2004), 169–191.

    Article  MathSciNet  Google Scholar 

  23. S. Peszat, J. Zabczyk: Stochastic evolution equations with a spatially homogeneous Wiener process. Stochastic Processes Appl. 72 (1997), 187–204.

    Article  MathSciNet  Google Scholar 

  24. S. Peszat, J. Zabczyk: Nonlinear stochastic wave and heat equations. Probab. Theory Relat. Fields 116 (2000), 421–443.

    Article  MathSciNet  Google Scholar 

  25. G. Tessitore, J. Zabczyk: Invariant measures for stochastic heat equations. Probab. Math. Stat. 18 (1998), 271–287.

    MathSciNet  MATH  Google Scholar 

  26. J. M. A. M. van Neerven, M. C. Veraar, L. Weis: Stochastic evolution equations in UMD Banach spaces. J. Funct. Anal. 255 (2008), 940–993.

    Article  MathSciNet  Google Scholar 

  27. B. Wang: Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems. J. Differ. Equations 253 (2012), 1544–1583.

    Article  MathSciNet  Google Scholar 

  28. S. V. Zelik: The attractor for a nonlinear reaction-diffusion system in the unbounded domain and Kolmogorov’s ε-entropy. Math. Nachr. 232 (2001), 129–179.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The author wishes to thank J. Seidler for discussions leading to the results of this paper and M. Ondreját for simplification of several important arguments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Slavík.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slavík, J. Attractors for Stochastic Reaction-Diffusion Equation with Additive Homogeneous Noise. Czech Math J 71, 21–43 (2021). https://doi.org/10.21136/CMJ.2020.0144-19

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/CMJ.2020.0144-19

Keywords

MSC 2020

Navigation