Skip to main content
Log in

Image-based effective medium approximation for fast permeability evaluation of porous media core samples

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

An image-based effective medium approximation (EMA) is developed so as to permit very fast transport properties evaluations of 3D porous media. From an image-based porous network (IBPN) built upon digital image processing of 3D binary images, we focus on throat’s local geometrical properties at the pore scale, for being the most sensible structural units which build up the local pressure. This approach is a 3D image–based extension of the critical point approach proposed in 2D fractures. We show, from analyzing various core rock samples available in the literature, that the asymptotic assumptions associated with the preeminence of critical points in throats are indeed geometrically relevant. We then describe how the image-based EMA evaluated from the conductances computed from the discrete IBPN can be reliably evaluated. The proposed method is evaluated upon the estimation of core sample permeability from binarized image obtained using X-ray tomography. Since it combines digital image treatments with statistical data post-processing without the need of computational fluid dynamics (CFD) computation, it is extremely cost efficient. The results are compared with a micro-scale Stokes flow computation in various rock samples. The sensitivity to the pore discretization also is discussed and illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alhashmi, Z., Blunt, M., Bijeljic, B.: The impact of pore structure heterogeneity, transport, and reaction conditions on fluid–fluid reaction rate studied on images of pore space. Transp. Porous Media 115(2), 215–237 (2016)

    Google Scholar 

  2. Amyot, O., Plouraboué, F.: Capillary pinching in a pinched microchannel. Phys. Fluids 19 (3), 033101 (2007)

    Google Scholar 

  3. Andrae, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E. H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks-part I: imaging and segmentation. Comput. Geosci. 50, 25–32 (2013)

    Google Scholar 

  4. Andrae, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E. H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks-part II: computing effective properties. Comput. Geosc. 50, 33–43 (2013)

    Google Scholar 

  5. Araya-Polo, M., Alpak, F.O., Hunter, S., Hofmann, R., Saxena, N.: Deep learning–driven permeability estimation from 2D images. Comput. Geosci. 1–10 (2019)

  6. Auradou, H.: Influence of wall roughness on the geometrical, mechanical and transport properties of single fractures. J. Phys. D: Appl. Phys. 42(21), 214015 (2009)

    Google Scholar 

  7. Bakke, S.: ØRen, P.E., others: 3-D pore-scale modelling of sandstones and flow simulations in the pore networks. SPE J. 2(02), 136–149 (1997)

    Google Scholar 

  8. Baldwin, C.A., Sederman, A.J., Mantle, M.D., Alexander, P., Gladden, L.F.: Determination and characterization of the structure of a pore space from 3D volume images. J. Colloid Interface Sci. 181 (1), 79–92 (1996)

    Google Scholar 

  9. Bernabé, Y., Olson, J.F.: The hydraulic conductance of a capillary with a sinusoidally varying cross-section. Geophys. Res. Lett. 27(2), 245–248 (2000)

    Google Scholar 

  10. Bertrand, G.: On p-simple points. Comptes Rendus de l’académie des Sciences. Série Math. 1(321), 1077–1084 (1995)

    Google Scholar 

  11. Bijeljic, B., Mostaghimi, P., Blunt, M.J.: Insights into non-fickian solute transport in carbonates. Water Resour. Res. 49(5), 2714–2728 (2013)

    Google Scholar 

  12. Bijeljic, B., Raeini, A., Mostaghimi, P., Blunt, M.J.: Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. Phys. Rev. E 87(1), 013011 (2013)

    Google Scholar 

  13. Blum, H.: Biological shape and visual science (part I). J. Theor. Biol. 38(2), 205–287 (1973)

    Google Scholar 

  14. Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)

    Google Scholar 

  15. Botev, Z.I., Grotowski, J.F., Kroese, D.P., et al.: Kernel density estimation via diffusion. Ann. Stat. 38(5), 2916–2957 (2010)

    Google Scholar 

  16. Bouix, S., Siddiqi, K., Tannenbaum, A.: Flux driven automatic centerline extraction. Med. Image Anal. 9(3), 209–221 (2005)

    Google Scholar 

  17. Bruggeman, V.D.: Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. i. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen. Ann. Phys. 416(7), 636–664 (1935)

    Google Scholar 

  18. Bultreys, T., De Boever, W., Cnudde, V.: Imaging and image-based fluid transport modeling at the pore scale in geological materials: a practical introduction to the current state-of-the-art. Earth-Sci. Rev. 155, 93–128 (2016)

    Google Scholar 

  19. Cao, T.T., Tang, K., Mohamed, A., Tan, T.S.: Parallel banding algorithm to compute exact distance transform with the GPU. In: Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games, pp. 83–90 (2010)

  20. Deng, W., Iyengar, S.S., Brener, N.E.: A fast parallel thinning algorithm for the binary image skeletonization. Int. J. High Perform. Comput. Appl. 14(1), 65–81 (2000)

    Google Scholar 

  21. Guan, K.M., Nazarova, M., Guo, B., Tchelepi, H., Kovscek, A.R., Creux, P.: Effects of image resolution on sandstone porosity and permeability as obtained from x-ray microscopy. Transp. Porous Media. 1–13 (2018)

  22. Guibert, R., Horgue, P., Debenest, G., Quintard, M.: A comparison of various methods for the numerical evaluation of porous media permeability tensors from pore-scale geometry. Math. Geosci. 48 (3), 329–347 (2016)

    Google Scholar 

  23. Guibert, R., Nazarova, M., Horgue, P., Hamon, G., Creux, P., Debenest, G.: Computational permeability determination from pore-scale imaging: sample size, mesh and method sensitivities. Transp. Porous Media 107(3), 641–656 (2015)

    Google Scholar 

  24. Guo, B., Ma, L., Tchelepi, H.A.: Image-based micro-continuum model for gas flow in organic-rich shale rock. Adv. Water Resour. 122, 70–84 (2018)

    Google Scholar 

  25. Horgue, P., Guibert, R., Gross, H., Creux, P., Debenest, G.: Efficiency of a two-step upscaling method for permeability evaluation at Darcy and pore scales. Comput. Geosci. 19(6), 1159–1169 (2015)

    Google Scholar 

  26. Janert, P.: Data analysis with open source tools: a hands-on guide for programmers and data scientists. “O’Reilly Media Inc” (2010)

  27. Jiang, Z., Wu, K., Couples, G., van Dijke, M., Sorbie, K., Ma, J.: Efficient extraction of networks from three-dimensional porous media. Water Resour. Res. 43(12) (2007)

  28. Landauer, R.: The electrical resistance of binary metallic mixtures. J. Appl. Phys. 23(7), 779–784 (1952)

    Google Scholar 

  29. Liang, Z., Ioannidis, M., Chatzis, I.: Geometric and topological analysis of three-dimensional porous media: pore space partitioning based on morphological skeletonization. J. Colloid Interface Sci. 221(1), 13–24 (2000)

    Google Scholar 

  30. Lindquist, W., Venkatarangan, A.: Investigating 3D geometry of porous media from high resolution images. Phys. Chem. Earth Part A: Solid Earth Geodesy 24(7), 593–599 (1999)

    Google Scholar 

  31. Lindquist, W.B., Lee, S.M., Coker, D.A., Jones, K.W., Spanne, P.: Medial axis analysis of void structure in three-dimensional tomographic images of porous media. Journal of Geophysical Research: Solid Earth 101(B4), 8297–8310 (1996)

    Google Scholar 

  32. Lotufo, R.A., Zampirolli, F.A.: Fast multidimensional parallel euclidean distance transform based on mathematical morphology. In: Proceedings XIV Brazilian Symposium on Computer Graphics and Image Processing, pp. 100–105. IEEE (2001)

  33. Martin, H.: Lubrication of gear teeth. Engineering 102, 119 (1916)

    Google Scholar 

  34. Meijster, A., Roerdink, J.B., Hesselink, W.H.: A General Algorithm for Computing Distance Transforms in Linear Time. In: Mathematical Morphology and Its Applications to Image and Signal Processing, pp. 331–340. Springer (2002)

  35. Mourzenko, V., Thovert, J.F., Adler, P.: Conductivity and transmissivity of a single fracture. Transp. Porous Media 123(2), 235–256 (2018)

    Google Scholar 

  36. Muljadi, B.P., Blunt, M.J., Raeini, A.Q., Bijeljic, B.: The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation. Adv. Water Resour. 95, 329–340 (2016)

    Google Scholar 

  37. Palágyi, K., Balogh, E., Kuba, A., Halmai, C., Erdȯhelyi, B., Sorantin, E., Hausegger, K.: A Sequential 3D Thinning Algorithm and Its Medical Applications. In: Biennial International Conference on Information Processing in Medical Imaging, pp. 409–415. Springer (2001)

  38. Plouraboué, F., Flukiger, F., Prat, M., Crispel, P.: Geodesic network method for flows between two rough surfaces in contact. Phys. Rev. E 73(3), 036305 (2006)

    Google Scholar 

  39. Plouraboué, F., Geoffroy, S., Prat, M.: Conductances between confined rough walls. Phys. Fluids 16(3), 615–624 (2004)

    Google Scholar 

  40. Pudney, C.: Distance-ordered homotopic thinning: a skeletonization algorithm for 3D digital images. Comput. Vis. Image Understand. 72, 404–413 (1998)

    Google Scholar 

  41. Raeini, A.Q., Bijeljic, B., Blunt, M.J.: Generalized network modeling: network extraction as a coarse-scale discretization of the void space of porous media. Phys. Rev. E 96(1), 013312 (2017)

    Google Scholar 

  42. Raeini, A.Q., Blunt, M.J., Bijeljic, B.: Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. J. Comput. Phys. 231(17), 5653–5668 (2012)

    Google Scholar 

  43. Saha, P.K., Borgefors, G., di Baja, G.S.: A survey on skeletonization algorithms and their applications. Pattern Recogn. Lett. 76, 3–12 (2016)

    Google Scholar 

  44. Saxena, N., Hofmann, R., Alpak, F.O., Berg, S., Dietderich, J., Agarwal, U., Tandon, K., Hunter, S., Freeman, J., Wilson, O.B.: References and benchmarks for pore-scale flow simulated using micro-CT images of porous media and digital rocks. Adv. Water Resour. 109, 211–235 (2017)

    Google Scholar 

  45. Saxena, N., Hows, A., Hofmann, R., Alpak, F.O., Freeman, J., Hunter, S., Appel, M.: Imaging and computational considerations for image computed permeability: operating envelope of digital rock physics. Adv. Water Resour. 116, 127–144 (2018)

    Google Scholar 

  46. Sheppard, A., Sok, R., Averdunk, H., Robins, V., Ghous, A.: Analysis of rock microstructure using high-resolution x-ray tomography. In: Proceedings of the International Symposium of the Society of Core Analysts, pp. 1–12 (2006)

  47. Sherbrooke, E.C., Patrikalakis, N.M., Brisson, E.: An algorithm for the medial axis transform of 3D polyhedral solids. IEEE Trans. Vis. Comput. Graph. 2(1), 44–61 (1996)

    Google Scholar 

  48. Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.W.: Hamilton-Jacobi skeletons. Int. J. Comput. Vis. 48(3), 215–231 (2002)

    Google Scholar 

  49. Silverstein, C.: Google performance tools (2011)

  50. Spanne, P., Thovert, J., Jacquin, C., Lindquist, W., Jones, K., Adler, P.: Synchrotron computed microtomography of porous media: topology and transports. Phys. Rev. Lett. 73(14), 2001 (1994)

    Google Scholar 

  51. Stroud, D.: Generalized effective-medium approach to the conductivity of an inhomogeneous material. Phys. Rev. B 12(8), 3368 (1975)

    Google Scholar 

  52. Stroud, D.: The effective medium approximations: some recent developments. Superlattices Microstruct. 23(3-4), 567–573 (1998)

    Google Scholar 

  53. Sudakov, O., Burnaev, E., Koroteev, D.: Driving digital rock towards machine learning: predicting permeability with gradient boosting and deep neural networks. Comput. Geosci. 127, 91–98 (2019)

    Google Scholar 

  54. Torquato, S.: Random heterogeneous materials: microstructure and macroscopic properties, vol. 16. Springer Science & Business Media (2013)

  55. Torsello, A., Hancock, E.R.: Correcting curvature-density effects in the Hamilton–Jacobi skeleton. IEEE Trans. Image Process. 15(4), 877–891 (2006)

    Google Scholar 

  56. Tschumperlé, D.: The CImg Library. In: IPOL 2012 Meeting on Image Processing Libraries, pp. 4–Pp (2012)

  57. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998)

    Google Scholar 

  58. Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013)

    Google Scholar 

  59. Zhao, H.Q., Macdonald, I.F., Kwiecien, M.J.: Multi-orientation scanning: a necessity in the identification of pore necks in porous media by 3-D computer reconstruction from serial section data. J. Colloid Interface Sci. 162(2), 390–401 (1994)

    Google Scholar 

Download references

Acknowledgments

We acknowledge PERM Group at Imperial College London to publicly share their binarized image sets.

Funding

This study was financially supported by Carnot Institute ISIfoR with ESTIME project. This work was performed using HPC resources from CALMIP (Grant P13147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Guibert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A conductance of an axisymmetrical tubular throat

In this section, we show how the leading order approximation for the conductance inside a tubular throat is given by Eq. (6). We consider Stokes equation associated with the velocity field u, the pressure p, and the dynamic viscosity μ

$$ \mu{\Delta}\textbf{u}-\nabla p=0, $$
(9)

inside an axisymmetrical tubular throat having a variable radius R(z) along the longitudinal direction z, considering cylindrical coordinates (r, θ, z) (as the one represented in Fig. 2a). We chose the origin of the coordinate system at the throat minimum radius r0, so that R(z = 0) = r0. We consider a finite length throat where a fixed pressure drop is applied at edges z = ±L/2. Using the usual lubrication non-dimensionalization u = U(𝜖ur, 𝜖uθ, uz), where U is the main longitudinal velocity along the z direction. From axisymmetry uθ = 0. In the vicinity of the constriction, the following Taylor expansion of the local radius is

$$ R(z)=r_{0}(1+\frac{1}{2}\frac{R_{zz}}{r_{0}}z^{2}+...). $$

Considering tilde dimensionless variables, \(r=\tilde r r_{0}\), \(R=\tilde R r_{0}\) and \(z=\tilde z \frac {r_{0}}{\sqrt {r_{0}R_{zz}}}\), one finds

$$ \tilde{R}(\tilde{z})=(1+\frac{1}{2}\tilde{z}^{2}+...). $$

Using \(\epsilon =\sqrt {r_{0}R_{zz}} \ll 1\) as a small parameter, one can seek for an asymptotic expansion the velocity and pressure

$$ \tilde{u}_{\tilde{r}}=\tilde{u}_{\tilde{r}}^{0}+\epsilon\tilde{u}_{\tilde{r}}^{1}+.. $$
$$ \tilde{p}=\tilde{p}^{0}+\epsilon\tilde{p}^{1}+.. $$

when inserted into the expansion in power of 𝜖 of the operators of the Stokes problem (9) leads to the following leading order problem

$$ \frac{{1}}{r_{0}\tilde{r}}\frac{\partial}{\partial\tilde{r}}\left( \tilde{r}\frac{\partial\tilde{u}^{0}}{\partial\tilde{r}}\right)-\frac{\epsilon}{r_{0}}\frac{\partial\tilde{p}^{0}}{\partial\tilde{z}}=0. $$

The solution of this problem can be found easily

$$ \tilde{u}^{0}=\frac{\epsilon}{4}\frac{\partial\tilde{p}^{0}}{\partial\tilde{z}}(\tilde{r}^{2}-\tilde{R}^{2}). $$

Computing the resulting leading order flux \(\tilde q^{0}\) from integrating the velocity in cylindrical coordinates between 0 and \(\tilde R(\tilde z)\) leads to

$$ \tilde{q}^{0}=-\frac{{\pi}\epsilon}{8}\frac{\partial\tilde{p}^{0}}{\partial\tilde{z}}\tilde{R}^{4}. $$

Looking for the head pressure loss gradient \(\partial _{\tilde {z}}\tilde {p}^{0}\),

$$ \frac{\partial\tilde{p}^{0}}{\partial\tilde{z}}=-\frac{8\tilde{q}^{0}}{\pi\epsilon}\tilde{R}^{-4}, $$

integrating between 0 and \(\tilde {z}\), considering \(\tilde {p}(0)=0\) as pressure reference,

$$ \begin{array}{@{}rcl@{}} \tilde{p}^{0}(\tilde{z})&=&\left[\frac{5}{16}\sqrt{2}\arctan\left( \frac{\tilde{z}}{\sqrt{2}}\right)\right.\\&&\left.+\frac{15\tilde{z^{5}}+80\tilde{z}^{3}+132\tilde{z}}{24(\tilde{z}^{2}+2)^{3}}\right]\left( -\frac{8\tilde{q}^{0}}{\pi\epsilon}\right), \end{array} $$

and considering limits for an infinitely long throat,

$$ \underset{\tilde{z}\rightarrow+\infty}{\lim}\tilde{p}^{0}=\frac{5\epsilon}{\sqrt{2}}\tilde{q}^{0}, $$

finally provides the following conductance for the whole throat:

$$ G_{n}=\frac{2\sqrt{2}}{5}\frac{r^{4}}{\epsilon}. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franc, J., Guibert, R., Horgue, P. et al. Image-based effective medium approximation for fast permeability evaluation of porous media core samples. Comput Geosci 25, 105–117 (2021). https://doi.org/10.1007/s10596-020-09991-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-020-09991-0

Keywords

Navigation