Skip to main content
Log in

Computing the equisingularity type of a pseudo-irreducible polynomial

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Germs of plane curve singularities can be classified accordingly to their equisingularity type. For singularities over \(\mathbb {C}\), this important data coincides with the topological class. In this paper, we characterise a family of singularities, containing irreducible ones, whose equisingularity type can be computed in an expected quasi-linear time with respect to the discriminant valuation of a Weierstrass equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Our results still hold under the weaker assumption that the characteristic of \(\mathbb {K}\) does not divide \({d}\).

  2. As usual, the notation \({{\mathcal {O}}}^{\sim}()\) hides logarithmic factors

  3. The terminology pseudo-irreducible is also used in [14] to design polynomials which cannot be factored into comaximal polynomials. These two notions are not related to each other.

  4. In the sequel, we rather use the terminology balanced and give an alternative definition of pseudo-irreducibility based on a Newton–Puiseux type algorithm. Both notions agree from Theorem 2.

  5. Note that F being Weierstrass, we have \({d}\le {\delta}\) and \({\delta}\log ({d})\in {{\mathcal {O}}}^{\sim}({\delta})\).

  6. When F is Weierstrass, we have \({d}\le {\delta}\). Otherwise, we might have \({d}\notin {{\mathcal {O}}}^{\sim}({\delta})\).

  7. We can extend this definition to non-Weierstrass polynomials, see Sect. 5.3.

  8. We may allow \(m_1=B_1=0\) when considering non Weierstrass polynomials, see Sect. 5.3.

  9. In [23, Prop.12], the condition \(P_k(0)\in \mathbb {K}_k^\times \) is imposed even if \(q_k=1\), but this has no impact from a complexity point of view.

References

  1. Abhyankar, S.: Irreducibility criterion for germs of analytic functions of two complex variables. Adv. Math. 35, 190–257 (1989)

    Article  MathSciNet  Google Scholar 

  2. Campillo, A.: Algebroid Curves in Positive Characteristic, volume 378 of LNCS. Springer, Berlin (1980)

    Book  Google Scholar 

  3. Casas-Alvero, E.: Plane Curve Singularities, Volume 276 of LMS Lecture Notes. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  4. Della Dora, J., Dicrescenzo, C., Duval, D.: About a new method for computing in algebraic number fields. In: EUROCAL 85, LNCS 204. Springer (1985)

  5. Duval, D.: Rational Puiseux expansions. Compos. Math. 70(2), 119–154 (1989)

    MathSciNet  MATH  Google Scholar 

  6. Garciá Barroso, E.R.: Invariants des singularités de courbes planes et courbure des fibres de Milnor. Ph.D. Tesis, ftp://tesis.bbtk.ull.es/ccppytec/cp16.pdf (1995)

  7. Gathen, J.V.Z., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge University Press, New York (2013)

    Book  Google Scholar 

  8. Gelfand, I., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants, and Multidimensional Determinants. Birkhäuser, Basel (1994)

    Book  Google Scholar 

  9. Greuel, G.-M., Lossen, C., Shustin, E.I.: Introduction to Singularities and Deformation Monographs in Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  10. Hodorog, M., Mourrain, B., Schicho, J.: A symbolic-numeric algorithm for computing the Alexander polynomial of a plane curve singularity. In: Proceedings of the 12th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pp. 21–28 (2010)

  11. Hodorog, M., Mourrain, B., Schicho, J.: An adapted version of the Bentley–Ottmann algorithm for invariants of plane curve singularities. In: Proceedings of 11th International Conference on Computational Science and Its Applications, volume 6784, pp. 121–131. Springer (2011)

  12. Hodorog, M., Schicho, J.: A regularization method for computing approximate invariants of plane curves singularities. In: Proceedings of the 2011 International Workshop on Symbolic-Numeric Computation, pp. 44–53. SNC (2011)

  13. Hoeven, J.V.D., Lecerf, G.: Accelerated Tower Arithmetic. Preprint hal-01788403 (2018)

  14. MacAdam, S., Swan, R.: Factorizations of monic polynomials. In: Rings, Modules, Algebras, and Abelian Groups, volume 236 of Lecture Notes in Pure and Application Mathematics, pp. 411–424 (2004)

  15. Merle, M.: Invariants polaires des courbes planes. Invent. Math. 41, 103–111 (1977)

    Article  MathSciNet  Google Scholar 

  16. Moroz, G., Schost, É.: A fast algorithm for computing the truncated resultant. In: ISSAC ’16: Proceedings of the Twenty-first International Symposium on Symbolic and Algebraic Computation, pp. 1–8, New York, NY, USA, 2016. ACM (2016)

  17. Nguyen, T.-S., Pham, Hong-Duc, Hoang, P.-D.: Topological invariants of plane curve singularities: polar quotients and Lojasiewicz gradient exponents (2017). arXiv:1708.08295v1

  18. Popescu-Pampu, P.: Approximate roots. Fields Inst. Commun. 33, 1–37 (2002)

    Google Scholar 

  19. Poteaux, A.: Calcul de développements de Puiseux et application au calcul de groupe de monodromie d’une courbe algébrique plane. Ph.D. thesis, Université de Limoges (2008)

  20. Poteaux, A., Rybowicz, M.: Complexity bounds for the rational Newton–Puiseux algorithm over finite fields. Appl. Algebra Eng. Commun. Comput. 22, 187–217 (2011)

    Article  MathSciNet  Google Scholar 

  21. Poteaux, A., Rybowicz, M.: Improving complexity bounds for the computation of Puiseux series over finite fields. In: Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC’15, pp. 299–306, New York, NY, USA, 2015. ACM (2015)

  22. Poteaux, A., Weimann, M.: Computing puiseux series : a fast divide and conquer algorithm, 2017. Preprint arXiv:1708.09067 (2017)

  23. Poteaux, A., Weimann, M.: A quasi-linear irreducibility test in \({\mathbb{K}} [[x]][y]\), 2019. Preprint arXiv:1911.03551 (2019)

  24. Poteaux, A., Weimann, M.: Using approximate roots for irreducibility and equi-singularity issues in \({\mathbb{K}}[[x]][y]\), 2019. Preprint arXiv:1904.00286v2 (2019)

  25. Sommese, A., Wampler, C.: Numerical Solution of Polynomial Systems Arising in Engineering and Science. World Scientific, Singapore (2005)

    Book  Google Scholar 

  26. Teitelbaum, J.: The computational complexity of the resolution of plane curve singularities. Math. Comput. 54(190), 797–837 (1990)

    Article  MathSciNet  Google Scholar 

  27. Wall, C.: Singular Points of Plane Curves. London Mathematical Society, London (2004)

    Book  Google Scholar 

  28. Walsh, P.G.: A polynomial-time complexity bound for the computation of the singular part of an algebraic function. Math. Comput. 69, 1167–1182 (2000)

    Article  MathSciNet  Google Scholar 

  29. Zariski, O.: Studies in equisingularity i: equivalent singularities of plane algebroid curves. Am. J. Math. 87, 507–535 (1965)

    Article  MathSciNet  Google Scholar 

  30. Zariski, O.: Studies in equisingularity ii: equisingularity in codimension 1 (and characteristic zero). Am. J. Math. 87, 972–1006 (1965)

    Article  MathSciNet  Google Scholar 

  31. Zariski, O.: Studies in equisingularity iii: saturation of local rings and equisingularity. Am. J. Math. 90, 961–1023 (1968)

    Article  MathSciNet  Google Scholar 

  32. Zariski, O.: Le problème des modules pour les branches planes. Centre de Maths de l’X, Palaiseau (1973)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their careful reading and for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Poteaux.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poteaux, A., Weimann, M. Computing the equisingularity type of a pseudo-irreducible polynomial. AAECC 31, 435–460 (2020). https://doi.org/10.1007/s00200-020-00451-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-020-00451-x

Keywords

Mathematics Subject Classification

Navigation