Skip to main content
Log in

Electronic structure of technologically important interfaces and heterostructures

  • Prospective Articles
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

From thin film solar cells to metal–oxide–semiconductor (MOS) devices in leading edge integrated circuits, the electronic structure at and near the interfaces between component materials determines the most important fundamental operating characteristics of those devices such as turn-on voltage, power dissipation, and off-state current leakage. Fermi level location at buried interfaces, semiconductor (SC) band bending, charge transfer, oxide defects, and work functions of the constituent materials all contribute to device performance. This paper describes how these important parameters can be determined by employing femtosecond photovoltage spectroscopy, an extension of ultraviolet photoelectron spectroscopy (UPS) using ultrafast lasers. While standard UPS is fundamentally a surface-sensitive spectroscopy, pump/probe techniques add a new dimension to this venerable spectroscopy, permitting the accurate extraction of the underlying band bending in SCs. When combined with the valence band edge location of the SC and oxide, and determination of the system Fermi level, full characterization of the electronic structure of a MOS stack can be obtained providing key insights on device operating properties. This approach can be extended to study key device materials in emerging areas of artificial intelligence and quantum computing. In each case, surprising new details were uncovered that led to performance optimization of these technologically important devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. E.W. Plummer and W. Eberhardt: Angle-resolved photoemission as a tool for the study of surfaces. Adv. Chem. Phys. 49, 533–656 (2007).

    Article  Google Scholar 

  2. M.P. Seah and W.A. Dench: Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1, 2–11 (1979).

    Article  CAS  Google Scholar 

  3. J.L. Krause, K.J. Schafer, and K.C. Kulander: High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68, 3535–3538 (1992).

    Article  CAS  Google Scholar 

  4. R.A. Bartels, A. Paul, H. Green, H.C. Kapteyn, M.M. Murnane, S. Backus, I.P. Christov, Y. Liu, D. Attwood, and C. Jacobsen: Generation of spatially coherent light at extreme ultraviolet wavelengths. Science 297, 376–378 (2002).

    Article  CAS  Google Scholar 

  5. S. Backus, J. Peatross, C.P. Huang, M.M. Murnane, and H.C. Kapteyn: Ti: Sapphire amplifier producing millijoule-level, 21-fs pulses at 1 kHz. Opt. Lett. 20, 2000–2002 (1995).

    Article  CAS  Google Scholar 

  6. C.G. Durfee, III, A.R. Rundquist, S. Backus, C. Herne, M.M. Murnane, and H.C. Kapteyn: Phase matching of high-order harmonics in hollow waveguides. Phys. Rev. Lett. 83, 2187 (1999).

    Article  CAS  Google Scholar 

  7. T. Popmintchev, M.-C. Chen, P. Arpin, M.M. Murnane, and H.C. Kapteyn: The attosecond nonlinear optics of bright coherent X-ray generation. Nat. Photon. 4, 822–832 (2010).

    Article  CAS  Google Scholar 

  8. R. Haight and D.R. Peale: Antibonding state on the Ge (111): As surface: Spectroscopy and dynamics. Phys. Rev. Lett. 70, 3979 (1993).

    Article  CAS  Google Scholar 

  9. R. Haight: Electron dynamics at surfaces. Surf. Sci. Rep. 21, 275–325 (1995).

    Article  CAS  Google Scholar 

  10. A. Gauthier, J.A. Sobota, N. Gauthier, K.J. Xu, H. Pfau, C. Rotundu, Z.X. Shen, and P.S. Kirchmann: Tuning time and energy resolution in time-resolved photoemission spectroscopy. arXiv Prepr arXiv200607758 (2020).

  11. Y. van de Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria, S. Agarwal, M.J. Marinella, A.A. Talin, and A. Salleo: A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414 (2017).

    Article  CAS  Google Scholar 

  12. M. Gloeckler and J.R. Sites: Efficiency limitations for wide-band-gap chalcopyrite solar cells. Thin Solid Films 480–481, 241–245 (2005).

    Article  CAS  Google Scholar 

  13. R. Noufi and K. Zweibel: High-efficiency CdTe and CIGS thin-film solar cells: Highlights and challenges. In 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI, 2006; pp. 317–320. doi: https://doi.org/10.1109/WCPEC.2006.279455.

  14. M. Dhanam, R.R. Prabhu, and P.K. Manoj: Investigations on chemical bath deposited cadmium selenide thin films. Mater. Chem. Phys. 107, 289–296 (2008).

    Article  CAS  Google Scholar 

  15. Y. Tauchi, K. Kim, H. Park, and W. Shafarman: Characterization of (AgCu)(InGa)Se2absorber layer fabricated by a selenization process from metal precursor. IEEE J. Photovolt. 3, 467–471 (2013).

    Article  Google Scholar 

  16. L.M. Mansfield, R. Noufi, C.P. Muzzillo, C. Dehart, K. Bowers, B. To, J.W. Pankow, R.C. Reedy, and K. Ramanathan: Enhanced performance in Cu(In,Ga)Se2 solar cells fabricated by the two-step selenization process with a potassium fluoride postdeposition treatment. IEEE J. Photovolt. 4, 1650–1654 (2014).

    Article  Google Scholar 

  17. C. Platzer-Björkman, T. Törndahl, D. Abou-Ras, J. Malmström, J. Kessler, and L. Stolt: Zn(O,S) buffer layers by atomic layer deposition in Cu(In,Ga)Se2 based thin film solar cells: Band alignment and sulfur gradient. J. Appl. Phys. 100, 044506 (2006).

    Article  CAS  Google Scholar 

  18. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and Y.Z. Mitzi: Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1–5 (2014).

    Article  Google Scholar 

  19. R. Haight, A. Barkhouse, O. Gunawan, B. Shin, M. Copel, M. Hopstaken, and D.B. Mitzi: Band alignment at the Cu2ZnSn(SxSe1–x)4/CdS interface. Appl. Phys. Lett. 98, 253502 -1–3 (2011).

    Article  CAS  Google Scholar 

  20. W. Ki and W.H. Hillhouse: Earth-abundant element photovoltaics directly from soluble precursors with high yield using a non-toxic solvent. Adv. Energy Mater. 15, 732–735 (2011).

    Article  CAS  Google Scholar 

  21. H. Paik, D.I. Schuster, L.S. Bishop, G. Kirchmair, G. Catelani, A.P. Sears, B.R. Johnson, M.J. Reagor, L. Frunzio, L.I. Glazman, and S.M. Girvin: Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011).

    Article  CAS  Google Scholar 

  22. R. McDermott: Materials origins of decoherence in superconducting qubits. IEEE Trans. Appl. Supercond. 19, 2 (2009).

    Article  CAS  Google Scholar 

  23. D. Lim, R. Haight, M. Copel, and E. Cartier: Oxygen defects and Fermi level location in metal-hafnium oxide-silicon structures. Appl. Phys. Lett. 87, 72902 (2005).

    Article  CAS  Google Scholar 

  24. J.A. del Alamo: Nanometre-scale electronics with III–V compound semiconductors. Nature 479, 317 (2011).

    Article  CAS  Google Scholar 

  25. E.A. Gibson, A. Paul, N. Wagner, D. Gaudiosi, S. Backus, I.P. Christov, A. Aquila, E.M. Gullikson, D.T. Attwood, M.M. Murnane, and H.C. Kapteyn: Coherent soft X-ray generation in the water window with Quasi-phase matching. Science 302, 95 (2003).

    Article  CAS  Google Scholar 

  26. M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’huillier, and P.B. Corkum: Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117 (1994).

    Article  CAS  Google Scholar 

  27. R. Haight and A.V. Carr: Industrial Applications of Ultrafast Lasers. 1st ed. (World Scientific Press, London, Singapore, 2018). ISBN 2335-6596 v. 11.

    Book  Google Scholar 

  28. D. Lim and R. Haight: In situ photovoltage measurements using femtosecond pump-probe photoelectron spectroscopy and its application to metal–HfO2–Si structures. J. Vac. Sci. Technol. A 23, 1698–1705 (2005).

    Article  CAS  Google Scholar 

  29. H. Carstens, M. Högner, T. Saule, S. Holzberger, N. Lilienfein, A. Guggenmos, C. Jocher, T. Eidam, D. Esser, V. Tosa, V. Pervak, J. Limpert, A. Tünnermann, U. Kleineberg, F. Krausz, and I. Pupeza: High-harmonic generation at 250 MHz with photon energies exceeding 100 eV. Optica 3, 366 (2016).

    Article  Google Scholar 

  30. S.M. Sze and K.K. Ng: Physics of Semiconductor Devices (John Wiley & Sons, New Jersey, US, 2006).

    Book  Google Scholar 

  31. E.A. Kraut, R.W. Grant, J.R. Waldrop, and S.P. Kowalczyk: Precise determination of the valence-band edge in x-ray photoemission spectra: Application to measurement of semiconductor interface potentials. Phys. Rev. Lett. 44, 1620 (1980).

    Article  CAS  Google Scholar 

  32. S.A. Chambers, T. Droubay, T.C. Kaspar, and M. Gutowski: Experimental determination of valence band maxima for SrTiO3, TiO2, and SrO and the associated valence band offsets with Si (001). J. Vac. Sci. Technol. B 22, 2205–2215 (2004).

    Article  CAS  Google Scholar 

  33. D. Lim and R. Haight: Temperature dependent defect formation and charging in hafnium oxides and silicates. J. Vac. Sci. Technol. B 23, 201–205 (2005).

    Article  CAS  Google Scholar 

  34. O.A. Dicks, J. Cottom, A.L. Shluger, and V Afanasiev: The origin of negative charging in amorphous Al2O3 films: The role of native defects. Nanotechnology 30, 205201 (2019).

    Article  CAS  Google Scholar 

  35. D.J. Frank, E. Nowak, and P.M. Solomon: Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259 (2001).

    Article  CAS  Google Scholar 

  36. R. Haight, A. Barkhouse, O. Gunawan, B. Shin, M. Copel, M. Hopstaken, and D.B. Mitzi: Band alignment at the Cu2ZnSn (SxSe1−x)4/CdS interface. Appl. Phys. Lett. 98, 253502 (2011).

    Article  CAS  Google Scholar 

  37. R. Haight, T. Gershon, O. Gunawan, P. Antunez, D. Bishop, Y.S. Lee, T. Gokman, K. Sardashti, E. Chagarov, and A. Kummel: Industrial perspectives on earth abundant, multinary thin film photovoltaics. Semicond. Sci. Technol. 32, 033004 (2017).

    Article  CAS  Google Scholar 

  38. T. Minemoto, Y. Hashimoto, T. Satoh, T. Negami, H. Takakura, and Y. Hamakawa: Cu(In,Ga)Se[sub 2] solar cells with controlled conduction band offset of window/Cu(In,Ga)Se2 layers. J. Appl. Phys. 89, 8327 (2001).

    Article  CAS  Google Scholar 

  39. D.A.R. Barkhouse, R. Haight, N. Sakai, H. Hiroi, H. Sugimoto, and D.B. Mitzi: Cd-free buffer layer materials on Cu2ZnSn(SxSe1-x)4: Band alignments with ZnO, ZnS, and In2S3. Appl. Phys. Lett. 100, 4–9 (2012).

    Article  CAS  Google Scholar 

  40. R. Haight, A. Barkhouse, W. Wang, Y. Luo, X. Shao, D.B. Mitzi, H. Homare, and S. Sugimoto: CdS and Cd-free buffer layers on solution phase grown Cu2ZnSn (SxSe1−x)4: Band alignments and electronic structure determined with femtosecond ultraviolet photoelectron spectroscopy. In MRS Proceedings, Vol. 1638 (Cambridge University Press, Cambridge, UK, 2014) p. mrsf13–1638.

    Google Scholar 

  41. J. Li, M. Wei, Q. Du, W. Liu, G. Jiang, and C. Zhu: The band alignment at CdS/Cu2ZnSnSe4 heterojunction interface. Surf. Interface Anal. 45, 682–684 (2013).

    Article  CAS  Google Scholar 

  42. M. Bär, B.A. Schubert, B. Marsen, R.G. Wilks, S. Pookpanratana, M. Blum, S. Krause, T. Unold, W. Yang, L. Weinhardt, and C. Heske: Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction. Appl. Phys. Lett. 99, 222105 (2011).

    Article  CAS  Google Scholar 

  43. A. Barinov, P. Dudin, L. Gregoratti, A. Locatelli, T.O. Menteş, M.A. Nino, and M. Kiskinova: Synchrotron-based photoelectron microscopy. Nucl. Instrum. Methods Phys. Res. A 601, 195–2002 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The work on earth-abundant CZTS,Se thin film photovoltaics was supported by DoE FPACEII funding under Contract No. DE-EE-0006334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Haight.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haight, R. Electronic structure of technologically important interfaces and heterostructures. MRS Communications 10, 529–537 (2020). https://doi.org/10.1557/mrc.2020.63

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2020.63

Navigation