Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intrinsic quantum confinement in formamidinium lead triiodide perovskite

Abstract

Understanding the electronic energy landscape in metal halide perovskites is essential for further improvements in their promising performance in thin-film photovoltaics. Here, we uncover the presence of above-bandgap oscillatory features in the absorption spectra of formamidinium lead triiodide thin films. We attribute these discrete features to intrinsically occurring quantum confinement effects, for which the related energies change with temperature according to the inverse square of the intrinsic lattice parameter, and with peak index in a quadratic manner. By determining the threshold film thickness at which the amplitude of the peaks is appreciably decreased, and through ab initio simulations of the absorption features, we estimate the length scale of confinement to be 10–20 nm. Such absorption peaks present a new and intriguing quantum electronic phenomenon in a nominally bulk semiconductor, offering intrinsic nanoscale optoelectronic properties without necessitating cumbersome additional processing steps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temperature-dependent absorption coefficient and peak features.
Fig. 2: Temperature dependence of the optoelectronic and lattice properties of FAPbI3.
Fig. 3: Estimating the length scale of the structures inducing confinement.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available in the Oxford University Research Archive repository50.

References

  1. Johnston, M. B. & Herz, L. M. Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Acc. Chem. Res. 49, 146–154 (2016).

    CAS  Google Scholar 

  2. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Google Scholar 

  3. NREL Research Cell Record Efficiency Chart (NREL, 2019).

  4. Herz, L. M. Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annu. Rev. Phys. Chem. 67, 65–89 (2016).

    CAS  Google Scholar 

  5. Stoumpos, C. C. & Kanatzidis, M. G. Halide perovskites: poor man’s high-performance semiconductors. Adv. Mater. 28, 5778–5793 (2016).

    CAS  Google Scholar 

  6. Fu, Y. et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4, 169–188 (2019).

    CAS  Google Scholar 

  7. Polavarapu, L., Nickel, B., Feldmann, J. & Urban, A. S. Advances in quantum-confined perovskite nanocrystals for optoelectronics. Adv. Energy Mater. 7, 1–9 (2017).

    Google Scholar 

  8. Li, M. et al. Amplified spontaneous emission based on 2D Ruddlesden–Popper perovskites. Adv. Funct. Mater. 28, 1707006 (2018).

    Google Scholar 

  9. Parrott, E. S. et al. Growth modes and quantum confinement in ultrathin vapour-deposited MAPbI3 films. Nanoscale 11, 14276–14284 (2019).

    CAS  Google Scholar 

  10. Hermes, I. M. et al. Ferroelastic fingerprints in methylammonium lead iodide perovskite. J. Phys. Chem. C 120, 5724–5731 (2016).

    CAS  Google Scholar 

  11. Rothmann, M. U. et al. Direct observation of intrinsic twin domains in tetragonal CH3NH3PbI3. Nat. Commun. 8, 6–13 (2017).

    Google Scholar 

  12. Wilson, J. N., Frost, J. M., Wallace, S. K. & Walsh, A. Dielectric and ferroic properties of metal halide perovskites. APL Mater. 7, 010901 (2019).

    Google Scholar 

  13. Röhm, H. et al. Ferroelectric properties of perovskite thin films and their implications for solar energy conversion. Adv. Mater. 31, 1806661 (2019).

    Google Scholar 

  14. Röhm, H., Leonhard, T., Hoffmann, M. J. & Colsmann, A. Ferroelectric poling of methylammonium lead iodide thin films. Adv. Funct. Mater. 30, 1908657 (2020).

    Google Scholar 

  15. Liu, S. et al. Ferroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskites. J. Phys. Chem. Lett. 6, 693–699 (2015).

    CAS  Google Scholar 

  16. Montero-Alejo, A. L., Menéndez-Proupin, E., Palacios, P., Wahnón, P. & Conesa, J. C. Ferroelectric domains may lead to two-dimensional confinement of holes, but not of electrons, in CH3NH3PbI3 perovskite. J. Phys. Chem. C 121, 26698–26705 (2017).

    CAS  Google Scholar 

  17. Pecchia, A., Gentilini, D., Rossi, D., Auf der Maur, M. & Di Carlo, A. Role of ferroelectric nanodomains in the transport properties of perovskite solar cells. Nano Lett. 16, 988–992 (2016).

    CAS  Google Scholar 

  18. Gómez, A., Wang, Q., Goñi, A. R., Campoy-Quiles, M. & Abate, A. Reply to the “Comment on the publication ‘Ferroelectricity-free lead halide perovskites’ by Gomez et al.” by Colsmann et al. Energy Environ. Sci. 13, 1892–1895 (2020).

    Google Scholar 

  19. Weller, M. T., Weber, O. J., Frost, J. M. & Walsh, A. Cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 6, 3209–3212 (2015).

    CAS  Google Scholar 

  20. McKenna, K. P. Electronic properties of {111} twin boundaries in a mixed-ion lead halide perovskite solar absorber. ACS Energy Lett. 3, 2663–2668 (2018).

    CAS  Google Scholar 

  21. Frost, J. J. M. J. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

    CAS  Google Scholar 

  22. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, 1977).

  23. Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

    CAS  Google Scholar 

  24. Wright, A. D. et al. Electron-phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7, 11755 (2016).

    Google Scholar 

  25. Davies, C. L. et al. Impact of the organic cation on the optoelectronic properties of formamidinium lead triiodide. J. Phys. Chem. Lett. 9, 4502–4511 (2018).

    CAS  Google Scholar 

  26. Rehman, W. et al. Charge-carrier dynamics and mobilities in formamidinium lead mixed-halide perovskites. Adv. Mater. 27, 7938–7944 (2015).

    CAS  Google Scholar 

  27. Li, Y. et al. Formamidinium-based lead halide perovskites: structure, properties, and fabrication methodologies. Small Methods 2, 1700387 (2018).

    Google Scholar 

  28. Borchert, J. et al. Large-area, highly uniform evaporated formamidinium lead triiodide thin films for solar cells. ACS Energy Lett. 2, 2799–2804 (2017).

    CAS  Google Scholar 

  29. Elliott, R. J. Intensity of optical absorption by excitions. Phys. Rev. 108, 1384–1389 (1957).

    CAS  Google Scholar 

  30. Davies, C. et al. Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process. Nat. Commun. 9, 293 (2018).

    Google Scholar 

  31. Sestu, N. et al. Absorption F-sum rule for the exciton binding energy in methylammonium lead halide perovskites. J. Phys. Chem. Lett. 6, 4566–4572 (2015).

    CAS  Google Scholar 

  32. Francisco-López, A. et al. Phase diagram of methylammonium/formamidinium lead iodide perovskite solid solutions from temperature-dependent photoluminescence and raman spectroscopies. J. Phys. Chem. C 124, 3448–3458 (2020).

    Google Scholar 

  33. Wright, A. D. et al. Band-tail recombination in hybrid lead iodide perovskite. Adv. Funct. Mater. 27, 1700860 (2017).

    Google Scholar 

  34. Weber, O. J. et al. Phase behavior and polymorphism of formamidinium lead iodide. Chem. Mater. 30, 3768–3778 (2018).

    CAS  Google Scholar 

  35. Brivio, F. et al. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal and cubic phases of methylammonium lead iodide. Phys. Rev. B 92, 144308 (2015).

    Google Scholar 

  36. Fang, H.-H. et al. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications. Light Sci. Appl 5, e16056 (2016).

    CAS  Google Scholar 

  37. Bockelmann, U. & Bastard, G. Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. Phys. Rev. B 42, 8947–8951 (1990).

    CAS  Google Scholar 

  38. Alivisatos, A. P., Harris, T. D., Carroll, P. J., Steigerwald, M. L. & Brus, L. E. Electron-vibration coupling in semiconductor clusters studied by resonance Raman spectroscopy. J. Chem. Phys. 90, 3463–3468 (1989).

    CAS  Google Scholar 

  39. Marini, A., Hogan, C., Grüning, M. & Varsano, D.yambo: an ab initio tool for excited state calculations. Comp. Phys. Commun. 180, 1392–1403 (2009).

    CAS  Google Scholar 

  40. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Google Scholar 

  41. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  42. Crothers, T. W. et al. Photon re-absorption masks intrinsic bimolecular charge-carrier recombination in CH3NH3PbI3 rerovskite. Nano Lett. 17, 5782–5789 (2017).

    CAS  Google Scholar 

  43. Chen, T. et al. Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite. Sci. Adv. 2, e1601650 (2016).

    Google Scholar 

  44. Stoumpos, C., Malliakas, C. & Kanatzidis, M. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    CAS  Google Scholar 

  45. Meyer, B. & Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3. Phys. Rev. B 65, 104111 (2002).

    Google Scholar 

  46. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).

    CAS  Google Scholar 

  47. Gómez, A., Wang, Q., Goñi, A. R., Campoy-Quiles, M. & Abate, A. Ferroelectricity-free lead halide perovskites. Energy Environ. Sci. 12, 2537–2547 (2019).

    Google Scholar 

  48. Martin, L. W. & Rappe, A. M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 16087 (2016).

    Google Scholar 

  49. Chen, T. et al. Origin of long lifetime of band-edge charge carriers in organic-inorganic lead iodide perovskites. Proc. Natl Acad. Sci. USA 114, 7519–7524 (2017).

    CAS  Google Scholar 

  50. Wright, A. D. et al. Dataset for ‘Intrinsic quantum confinement in formamidinium lead triiodide perovskite’. Oxford University Research Archive https://doi.org/10.5287/bodleian:Z52M67emQ (2020).

Download references

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council, the EPSRC Center for Doctoral Training in New and Sustainable Photovoltaics, the Chaire de Recherche Rennes Metropole project and the Robert A. Welch Foundation under award number F-1990-20190330.

Author information

Authors and Affiliations

Authors

Contributions

A.D.W. performed the FTIR experiments, data analysis and participated in the experimental planning. G.V. carried out the first-principles calculations. J.B. prepared the samples. C.L.D. provided support with the FTIR experiments and data analysis. The project was conceived, planned and supervised by F.G., M.B.J. and L.M.H. A.D.W. wrote the first version of the manuscript and all authors contributed to the discussion and preparation of the final version of the article.

Corresponding author

Correspondence to Laura M. Herz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–15, Figs. 1–23, Table 1 and refs. 1–53.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, A.D., Volonakis, G., Borchert, J. et al. Intrinsic quantum confinement in formamidinium lead triiodide perovskite. Nat. Mater. 19, 1201–1206 (2020). https://doi.org/10.1038/s41563-020-0774-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0774-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing