Skip to main content
Log in

Condensation Product of p-anisaldehyde and L-phenylalanine: Fluorescent “on-off” Sensor for Cu2+ and IMPLICATION Logic Gate

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

(Z)-2-(4-methoxybenzylideneamino)-3-phenylpropanoic acid (L) synthesized by condensation of p-anisaldehyde and L-phenylalanine acts as selective fluorescent as well as voltammetric sensor for Cu2+ in 2:1 (v/v) CH3OH:H2O. The fluorescence intensity of Lmax 425 nm) is quenched ca. 65% by Cu2+. Metal ions - Li+, Na+, K+, Al3+, Cu2+, Zn2+, Cd2+, Hg2+, Mn2+, Ni2+ and Pb2+ do not interfere. The binding constant and the detection limits were calculated to be 0.56 × 102 M−1 and 10−6 M respectively. DFT and TDDFT calculations confirmed 2:1 binding stoichiometry between L and Cu2+ obtained from fluorescence data. The interaction between L and Cu2+ is reversible for many cycles with respect to ethylenediamine tetraacetate anion (EDTA2−) which results in IMPLICATION logic gate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 3
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Luo Q, Bandi KR, Dong Y, Bao H, Li D, Chen Q (2019) Synthesis and living cell imaging of a novel fluorescent sensor for selective cupric detection. Spectrochim Acta A 214:146–151

    Google Scholar 

  2. Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L (2014) Copper active sites in biology. Chem Rev 114:3659–3853

    CAS  Google Scholar 

  3. Robert A, Liu Y, Nguyen M, Meunier B (2012) Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer's disease. Acc Chem Res 48:1332–1339

    Google Scholar 

  4. Hickey JL, Donnelly PS (2012) Diagnostic imaging of Alzheimer's disease with copper and technetium complexes. Coord Chem Rev 256:2367–2380

    CAS  Google Scholar 

  5. Verwilst P, Sunwoo K, Kim JS (2015) The role of copper ions in pathophysiology and fluorescent sensors for the detection thereof. Chem Commun 51:5556–5571

    CAS  Google Scholar 

  6. Binolfi A, Quintanar L, Bertoncini CW, Griesinger C, Fernández CO (2012) Bioinorganic chemistry of copper coordination to alpha-synuclein: relevance to Parkinson's disease. Coord Chem Rev 256:2188–2201

    CAS  Google Scholar 

  7. Viles JH (2012) Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer's, Parkinson's and prion diseases. Coord Chem Rev 256:2271–2284

    CAS  Google Scholar 

  8. Quintanar L, Rivillas-Acevedo L, Grande-Aztatzi R, Gómez-Castro CZ, ArcosLópez T, Vela A (2013) Copper coordination to the prion protein: insights from theoretical studies. Coord Chem Rev 257:429–444

    CAS  Google Scholar 

  9. Kozlowski H, Luczkowski M, Remelli M, Valensin D (2012) Copper, zinc and iron in neurodegenerative diseases (Alzheimer's, Parkinson's and prion diseases). Coord Chem Rev 256:2129–2141

    CAS  Google Scholar 

  10. Yang X, Zhang W, Yi Z, Xu H, Wei J, Hao L (2017) Highly sensitive and selective fluorescent sensor for copper(II) based on salicylaldehyde Schiff-base derivatives with aggregation induced emission and mechanoluminescence. New J Chem 41:11079–11088

    CAS  Google Scholar 

  11. Shirasaki Y, Kamino S, Tanioka M, Watanabe K, Takeuchi Y, Komeda S, Enomoto S (2013) New Aminobenzopyranoxanthene-based colorimetric sensor for copper(II) ions with dual-color signal detection system. Chem Asian J 2013:2609–2613

    Google Scholar 

  12. Gonzales APS, Firmino MA, Nomura C, Rocha FRP, Oliveira PV, Gaubeur I (2009) Peat as a natural solid-phase for copper preconcentration and determination in a multicommuted flow system coupled to flame atomic absorption spectrometry. Anal Chim Acta 636:198–204

    CAS  Google Scholar 

  13. Becker JS, Matusch A, Depboylu C, Dobrowolska J, Zoriy MV (2007) Quantitative imaging of selenium, copper, and zinc in thin sections of biological tissues (slugs−genus Arion) measured by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 79:6074–6080

    CAS  Google Scholar 

  14. Liu Y, Liang P, Guo L (2005) Nanometer titanium dioxide immobilized on silica gel as sorbent for pre concentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry. Talanta 68:25–30

    CAS  Google Scholar 

  15. Ghanemi K, Nikpour Y, Omidvar O, Maryamabadi A (2011) Sulfur-nanoparticle-based method for separation and preconcentration of some heavy metals in marine samples prior to flame atomic absorption spectrometry determination. Talanta 85:763–769

    CAS  Google Scholar 

  16. Mahmoud ME, Kenawy IMM, Hafez MAH, Lashein RR (2010) Removal, preconcentration and determination of trace heavy metal ions in water samples by AAS via chemically modified silica gel N-(1-carboxy-6-hydroxy) benzylidenepropyl-amine ion exchanger. Desalination 250:62–70

    CAS  Google Scholar 

  17. Fathi SAM, Yaftian MR (2009) Enrichment of trace amounts of copper(II) ions in water samples using octadecyl silica disks modified by a Schiff base ionophore prior to flame atomic absorption spectrometric determination. J Hazard Mater 164:133–137

    CAS  Google Scholar 

  18. Salvo F, La Pera L, Di Bella G, Nicotina M, Dugo G (2003) Influence of different mineral and organic pesticide treatments on cd(II), cu(II), Pb(II), and Zn(II) contents determined by derivative potentiometric stripping analysis in italian white and red wines. J Agric Food Chem 51:1090–1094

    CAS  Google Scholar 

  19. Feier B, Băjan I, Fizeșan I, Floner D, Cristea C, Geneste F, Săndulescu R (2015) Highly selective electrochemical detection of copper (II) using N,N′-bis(acetylacetone)-ethylenediimine as a receptor. Int J Electrochem Sci 10:121–139

    Google Scholar 

  20. Nezhadali A, Sadeghzadeh S (2016) Optimization of stripping voltammetric sensor by mixture design-artificial neural network-genetic algorithm for determination of trace copper(II) based on iodoquinol-carbon nanotube modified carbon paste electrode. Sensors Actuators B Chem 224:134–142

    CAS  Google Scholar 

  21. Oztekin Y, Yazicigil Z, Ramanaviciene A, Ramanavicius A (2011) Square wave voltammetry based on determination of copper (II) ions by polyluteolin- and polykaempferol- modified electrodes. Talanta 85:1020–1027

    CAS  Google Scholar 

  22. Adham A (2018) El-Zomrawy selective and sensitive spectrophotometric method to determine trace amounts of copper metal ions using Amaranth food dye. Spectrochim Acta A Mol Biomol Spectrosc 203:450–454

    Google Scholar 

  23. dos Santos Carlosa F, Nunesa MC, De Bonib L, Machadoc GS, Nunes FS (2017) A novel fluorene-derivative Schiff-base fluorescent sensor for copper (II) in organic media. J Photochem Photobiol A 348:41–46

    Google Scholar 

  24. Tiwari K, Kumar S, Kumar V, Kaur J, Arora S, Mahajan RK (2018) An azine based sensor for selective detection of Cu2+ ions and its copper complex for sensing of phosphate ions in physiological conditions and in living cells. Spectrochim Acta A Mol Biomol Spectrosc 191:16–26

    CAS  Google Scholar 

  25. Moghadam FN, Amirnasr M, Meghdadi S, Eskandari K, Buchholz A, Plass W (2019) A new fluorene derived Schiff-base as a dual selective fluorescent probe for Cu2+ and CN. Spectrochim Acta A Mol Biomol Spectrosc 207:6–15

    Google Scholar 

  26. Kumar J, Bhattacharyya PK, Das DK (2015) New dual fluorescent “on–off” and colorimetric sensor for copper(II): copper(II) binds through N coordination and pi cation interaction to sensor. Spectrochim Acta A Mol Biomol Spectrosc 138:99–104

    CAS  Google Scholar 

  27. Hong R, Ping W, Fei L, Shihua Y, Li J, Dawei L (2020) Development of a colorimetric and fluorescent Cu2+ ion probe based on 2′-hydroxy-2,4-diaminoazobenzene and its application in real water sample and living cells. Inorg Chim Acta 507:119583

    CAS  Google Scholar 

  28. Fang B, Liang Y, Chen F (2014) Highly sensitive and selective determination of cupric ions by usingN,N′-bis(salicylidene)-o-phenylenediamine asfluorescentchemosensor and related applications. Talanta 119:601–605

    CAS  Google Scholar 

  29. Yang X, Zhang W, Yi Z, Xu H, Wei J, Hao L (2017) Highly sensitive and selective fluorescent sensor for copper(ii) based on salicylaldehyde Schiff-base derivatives with aggregation induced emission and mechanoluminescence. New J Chem 41:11079–11088

    CAS  Google Scholar 

  30. Kaur I, Kaur P, Singh K (2018) 2-(4-Amino-2-hydroxyphenyl)benzothiazole based Schiff-base:Complexation/decomplexation driven photo physical tuning of fluorescence leading to Cu2+ and PO43− detection. Sensors Actuators B 257:1083–1092

    CAS  Google Scholar 

  31. de Silva AP, Gunaratne HQN, McCoy CP (1993) A molecular photoionic AND gate based on fluorescent signaling. Nature 364:42–44

    Google Scholar 

  32. Erbas-Cakmak S, Kolemen S, Sedgwick AC, Gunnlaugsson T, James TD, Yoon J, Akkaya EU (2018) Molecular logic gates: the past, present and future. Chem Soc Rev 47:2228–2248

    CAS  Google Scholar 

  33. Liu SG, Li N, Fan YZ, Li NB, Luo HQ (2017) Intrinsically fluorescent polymer nanoparticles for sensing Cu2+ inaqueous media and constructing an IMPLICATION logic gate. Sensors Actuators B 243:634–641

    CAS  Google Scholar 

  34. Gao R-R, Shi S, Zhu Y, Huang H-L, Yao T-M (2016) A RET-supported logic gate combinatorial library to enable modeling and implementation of intelligent logic functions. Chem Sci 7:1853–1861

    CAS  Google Scholar 

  35. Kumar J, Sarma MJ, Phukan P, Das DK (2015) A new simple Schiff base fluorescent “on” sensor for Al3+ and its living cell imaging. Dalton Trans 44:4576–4581

    CAS  Google Scholar 

  36. Kumar J, Bhattacharyya PK, Das DK (2015) A new duel fluorescent “on-off” and colorimetric sensor for copper(II): copper(II) binds through N coordination and pi cation interaction to sensor. Spectrochim Acta A 138:99–104

    CAS  Google Scholar 

  37. Sarma S, Bhowmik A, Sarma MJ, Banu S, Phukan P, Das DK (2018) Condensation product of 2-hydroxy-1-napthaldehyde and 2-aminophenol: selective fluorescent sensor for Al3+ ion. Inorg Chim Acta 469:202–208

    CAS  Google Scholar 

  38. Becke AD (1993) Density-functional thermochemistry III. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  39. Lee C, Yang W, Parr RG (1988) Development of the Coll-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, VothGA SP, Dannenberg JJ, Dapprich S, DanielsAD FO, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision C.01. Gaussian, Inc., Wallingford

    Google Scholar 

Download references

Acknowledgements

Authors thanks SERB for financial support through EMR/2016/001745 and FIST (DST) to the department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diganta Kumar Das.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarma, S., Devi, B., Bhattacharyya, P.K. et al. Condensation Product of p-anisaldehyde and L-phenylalanine: Fluorescent “on-off” Sensor for Cu2+ and IMPLICATION Logic Gate. J Fluoresc 30, 1513–1521 (2020). https://doi.org/10.1007/s10895-020-02600-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02600-4

Keywords

Navigation