Skip to main content

Advertisement

Log in

Dehydroabietylamine-based thiazolidin-4-ones and 2-thioxoimidazolidin-4-ones as novel tyrosyl-DNA phosphodiesterase 1 inhibitors

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a DNA repair enzyme that plays a key role in repairing damage caused by various antitumor drugs. It is a promising target in medicinal chemistry for the creation of cancer adjuvant therapy. Inhibition of this enzyme together with the use of anticancer chemotherapy enhances the effect of the latter. The natural mutant of TDP1, TDP1(H493R), causes severe neurodegenerative disease spinocerebellar ataxia syndrome with axonal neuropathy (SCAN1). Inhibition of TDP1(H493R) appears to be useful in containment the progression of the disease. A library of compounds was synthesized starting from dehydroabietylamine including heterocyclic pharmacophore groups in the core. To obtain the desired products, the starting dehydroabietylamine was introduced sequentially in reaction with isothiocyanate and ethyl bromoacetate. Different classes of heterocyclic derivatives—2-iminothiazolidin-4-ons and 2-thioxoimidazolidin-4-ones—were obtained depending on the addition order of reagents. 2-Iminothiazolidin-4-thiones were obtained from 2-iminothiazolidin-4-ones under the action of the Lawesson’s reagent. Effective TDP1 inhibitors were found among the obtained compounds that work in submicromolar concentrations. The inhibitor of TDP1(H493R) was also detected.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3.

Similar content being viewed by others

References

  1. https://www.who.int/news-room/fact-sheets/detail/cancer

  2. Hosoya N, Miyagawa K (2014) Targeting DNA damage response in cancer therapy. Cancer Sci 105:370–388. https://doi.org/10.1111/cas.12366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abbasi-Radmoghaddam Z, Riahi S, Gharaghani S, Mohammadi-Khanaposhtanai M (2020) Design of potential anti-tumor PARP-1 inhibitors by QSAR and molecular modeling studies. Mol Divers. https://doi.org/10.1007/s11030-020-10063-9

    Article  PubMed  Google Scholar 

  4. Laev SS, Salakhutdinov NF, Lavrik OI (2016) Tyrosyl-DNA phosphodiesterase inhibitors: progress and potential. Bioorganic Med Chem 24:5017–5027. https://doi.org/10.1016/j.bmc.2016.09.045

    Article  CAS  Google Scholar 

  5. Khomenko T, Zakharenko A, Odarchenko T, Arabshahi HJ, Sannikova V, Zakharova O, Korchagina D, Reynisson J, Volcho K, Salakhutdinov N, Lavrik O (2016) New inhibitors of tyrosyl-DNA phosphodiesterase I (Tdp 1) combining 7-hydroxycoumarin and monoterpenoid moieties. Bioorganic Med Chem 24:5573–5581. https://doi.org/10.1016/j.bmc.2016.09.016

    Article  CAS  Google Scholar 

  6. Ledesma FC, El Khamisy SF, Zuma MC, Osborn K, Caldecott KW (2009) A human 5′-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature 461:674–678. https://doi.org/10.1038/nature08444

    Article  CAS  Google Scholar 

  7. Cuya SM, Comeaux EQ, Wanzeck K, Yoon KJ, van Waardenburg RCAM (2016) Dysregulated human Tyrosyl-DNA phosphodiesterase I acts as cellular toxin. Oncotarget 7:86660–86674. https://doi.org/10.18632/oncotarget.13528

    Article  PubMed  PubMed Central  Google Scholar 

  8. Katyal S, El-Khamisy SF, Russell HR, Li Y, Ju L, Caldecott KW, McKinnon PJ (2007) TDP1 facilitates chromosomal single-strand break repair in neurons and is neuroprotective in vivo. EMBO J 26:4720–4731. https://doi.org/10.1038/sj.emboj.7601869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alagoz M, Wells OS, El-Khamisy SF (2014) TDP1 deficiency sensitizes human cells to base damage via distinct topoisomerase I and PARP mechanisms with potential applications for cancer therapy. Nucleic Acids Res 42:3089–3103. https://doi.org/10.1093/nar/gkt1260

    Article  CAS  PubMed  Google Scholar 

  10. Huang HC, Liu J, Baglo Y, Rizvi I, Anbil S, Pigula M, Hasan T (2018) Mechanism-informed repurposing of minocycline overcomes resistance to topoisomerase inhibition for peritoneal carcinomatosis. Mol Cancer Ther 17:508–520. https://doi.org/10.1158/1535-7163.MCT-17-0568

    Article  CAS  PubMed  Google Scholar 

  11. Nivens MC, Felder T, Galloway AH, Pena MMO, Pouliot JJ, Spencer HT (2004) Engineered resistance to camptothecin and antifolates by retroviral coexpression of tyrosyl DNA phosphodiesterase-I and thymidylate synthase. Cancer Chemother Pharmacol 53:107–115. https://doi.org/10.1007/s00280-003-0717-6

    Article  CAS  PubMed  Google Scholar 

  12. Barthelmes HU, Habermeyer M, Christensen MO, Mielke C, Interthal H, Pouliot JJ, Boege F, Marko D (2004) TDP1 overexpression in human cells counteracts DNA damage mediated by topoisomerases I and II. J Biol Chem 279:55618–55625. https://doi.org/10.1074/jbc.M405042200

    Article  CAS  PubMed  Google Scholar 

  13. Meisenberg C, Gilbert DC, Chalmers A, Haley V, Gollins S, Ward SE, El-Khamisy SF (2015) Clinical and cellular roles for TDP1 and TOP1 in modulating colorectal cancer response to irinotecan. Mol Cancer Ther 14:575–585. https://doi.org/10.1158/1535-7163.MCT-14-0762

    Article  CAS  PubMed  Google Scholar 

  14. Takashima H, Boerkoel CF, John J, Saifi GM, Salih MAM, Armstrong D, Mao Y, Quiocho FA, Roa BB, Nakagawa M, Stockton DW, Lupski JR (2002) Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat Genet 32:267–272. https://doi.org/10.1038/ng987

    Article  CAS  PubMed  Google Scholar 

  15. Kovaleva K, Oleshko O, Mamontova E, Yarovaya O, Zakharova O, Zakharenko A, Kononova A, Dyrkheeva N, Cheresiz S, Pokrovsky A, Lavrik O, Salakhutdinov N (2019) Dehydroabietylamine ureas and thioureas as tyrosyl-DNA phosphodiesterase 1 inhibitors that enhance the antitumor effect of temozolomide on glioblastoma cells. J Nat Prod 82:2443–2450. https://doi.org/10.1021/acs.jnatprod.8b01095

    Article  CAS  PubMed  Google Scholar 

  16. Sirivolu VR, Vernekar SKV, Marchand C, Naumova A, Chergui A, Renaud A, Stephen AG, Chen F, Sham YY, Pommier Y, Wang Z (2012) 5-Arylidenethioxothiazolidinones as Inhibitors of Tyrosyl-DNA Phosphodiesterase i. J Med Chem 55:8671–8684. https://doi.org/10.1021/jm3008773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vicini P, Geronikaki A, Incerti M, Zani F, Dearden J, Hewitt M (2008) 2-Heteroarylimino-5-benzylidene-4-thiazolidinones analogues of 2-thiazolylimino-5-benzylidene-4-thiazolidinones with antimicrobial activity: Synthesis and structure-activity relationship. Bioorganic Med Chem 16:3714–3724. https://doi.org/10.1016/j.bmc.2008.02.001

    Article  CAS  Google Scholar 

  18. Shingade SG, Bari SB (2013) Synthesis and antimicrobial screening of 4-thiazolidinone and 2-azetidinone derivatives of piperazine. Med Chem Res 22:699–706. https://doi.org/10.1007/s00044-012-0063-5

    Article  CAS  Google Scholar 

  19. Ewies EF, El-Hag FAA (2020) Synthesis, reactions, and antimicrobial evaluations of new benzo[e][1,3]thiazine derivatives. J Heterocycl Chem 57:163–172. https://doi.org/10.1002/jhet.3759

    Article  CAS  Google Scholar 

  20. Suryawanshi R, Jadhav S, Makwana N, Desai D, Chaturbhuj D, Sonawani A, Idicula-Thomas S, Murugesan V, Katti SB, Tripathy S, Paranjape R, Kulkarni S (2017) Evaluation of 4-thiazolidinone derivatives as potential reverse transcriptase inhibitors against HIV-1 drug resistant strains. Bioorganic Chem 71:211–218. https://doi.org/10.1016/j.bioorg.2017.02.007

    Article  CAS  Google Scholar 

  21. das Neves AM, Campos JC, Gouvêa DP, Berwaldt GA, Goulart TB, Avila CT, Machado P, Zimmer GC, Cunico W (2019) Synthesis of novel thiazolidin-4-ones and thiazinan-4-ones analogous to rosiglitazone. J Heterocycl Chem 56:251–259. https://doi.org/10.1002/jhet.3402

    Article  CAS  Google Scholar 

  22. Saini S (2019) Synthesis and anticonvulsant studies of thiazolidinone and azetidinone derivatives from indole moiety. Drug Res (Stuttg) 69:445–450. https://doi.org/10.1055/a-0809-5098

    Article  CAS  Google Scholar 

  23. Amr AE-GE, Ibrahimd AA, El-Shehry MF, Hosni HM, Fayed AA, Elsayed EA (2019) In vitro and in vivo anti-breast cancer activities of some newly synthesized 5-(thiophen-2-yl)thieno- [2,3-d]pyrimidin-4-one candidates. Molecules 24:2255. https://doi.org/10.3390/molecules24122255

    Article  CAS  PubMed Central  Google Scholar 

  24. Shawky AM, Abourehab MAS, Abdalla AN, Gouda AM (2020) Optimization of pyrrolizine-based Schiff bases with 4-thiazolidinone motif: Design, synthesis and investigation of cytotoxicity and anti-inflammatory potency. Eur J Med Chem 185:111780. https://doi.org/10.1016/j.ejmech.2019.111780

    Article  CAS  PubMed  Google Scholar 

  25. Tripathi AC, Gupta SJ, Fatima GN, Sonar PK, Verma A, Saraf SK (2014) 4-thiazolidinones: the advances continue. Eur J Med Chem 72:52–77. https://doi.org/10.1016/j.ejmech.2013.11.017

    Article  CAS  PubMed  Google Scholar 

  26. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740. https://doi.org/10.1021/jm901137j

    Article  CAS  PubMed  Google Scholar 

  27. Erşen D, Ülger M, Mangelinckx S, Gemili M, Şahin E, Nural Y (2017) Synthesis and anti(myco)bacterial activity of novel 5,5-diphenylpyrrolidine N-aroylthiourea derivatives and a functionalized hexahydro-1H-pyrrolo[1,2-c]imidazole. Med Chem Res 26:2152–2160. https://doi.org/10.1007/s00044-017-1907-9

    Article  CAS  Google Scholar 

  28. Khatik GL, Kaur J, Kumar V, Tikoo K, Venugopalan P, Nair VA (2011) Aldol derivatives of Thioxoimidazolidinones as potential anti-prostate cancer agents. Eur J Med Chem 46:3291–3301. https://doi.org/10.1016/j.ejmech.2011.04.050

    Article  CAS  PubMed  Google Scholar 

  29. Carmi C, Cavazzoni A, Zuliani V, Lodola A, Bordi F, Plazzi PV, Alfieri RR, Petronini PG, Mor M (2006) 5-Benzylidene-hydantoins as new EGFR inhibitors with antiproliferative activity. Bioorganic Med Chem Lett 16:4021–4025. https://doi.org/10.1016/j.bmcl.2006.05.010

    Article  CAS  Google Scholar 

  30. Kachhadia VV, Patel MR, Joshi HS (2005) Heterocyclic systems containing S/N regioselective nucleophilic competition: facile synthesis, antitubercular and antimicrobial activity of thiohydantoins and iminothiazolidinones containing the benzo[b]thiophene moiety. J Serbian Chem Soc 70:153–161. https://doi.org/10.2298/JSC0502153K

    Article  CAS  Google Scholar 

  31. Zakharenko A, Khomenko T, Zhukova S, Koval O, Zakharova O, Anarbaev R, Lebedeva N, Korchagina D, Komarova N, Vasiliev V, Reynisson J, Volcho K, Salakhutdinov N, Lavrik O (2015) Synthesis and biological evaluation of novel tyrosyl-DNA phosphodiesterase 1 inhibitors with a benzopentathiepine moiety. Bioorganic Med Chem 23:2044–2052. https://doi.org/10.1016/j.bmc.2015.03.020

    Article  CAS  Google Scholar 

  32. Interthal H, Pouliot JJ, Champoux JJ (2001) The tyrosyl-DNA phosphodiesterase Tdp1 is a member of the phospholipase D superfamily. Proc Natl Acad Sci U S A 98:12009–12014. https://doi.org/10.1073/pnas.211429198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Interthal H, Chen HJ, Champoux JJ (2005) Human Tdp1 cleaves a broad spectrum of substrates, including phosphoamide linkages. J Biol Chem 280:36518–36528. https://doi.org/10.1074/jbc.M508898200

    Article  CAS  PubMed  Google Scholar 

  34. Interthal H, Chen HJ, Kehl-Fie TE, Zotzmann J, Leppard JB, Champoux JJ (2005) SCAN1 mutant Tdp1 accumulates the enzyme-DNA intermediate and causes camptothecin hypersensitivity. EMBO J 24:2224–2233. https://doi.org/10.1038/sj.emboj.7600694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang SW, Burgin AB, Huizenga BN, Robertson CA, Yao KC, Nash HA (1996) A eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA and type I topoisomerases. Proc Natl Acad Sci U S A 93:11534–11539. https://doi.org/10.1073/pnas.93.21.11534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lebedeva NA, Rechkunova NI, Lavrik OI (2011) AP-site cleavage activity of tyrosyl-DNA phosphodiesterase 1. FEBS Lett 585:683–686. https://doi.org/10.1016/j.febslet.2011.01.032

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by Foundation by the Russian Foundation Research (N 18-33-00297). The authors would like to express their gratitude to the Collective Use Chemical Service Center of the Siberian Branch, Russian Academy of Sciences, for the obtained spectra and analytical data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kseniya Kovaleva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1862 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovaleva, K., Mamontova, E., Yarovaya, O. et al. Dehydroabietylamine-based thiazolidin-4-ones and 2-thioxoimidazolidin-4-ones as novel tyrosyl-DNA phosphodiesterase 1 inhibitors. Mol Divers 25, 2389–2397 (2021). https://doi.org/10.1007/s11030-020-10132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10132-z

Keywords

Navigation