Skip to main content
Log in

Constitutive Model of Triple-Step-Aged Al–Mg–Si Alloy Incorporating Precipitation Kinetics

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In the present study, we present a constitutive model for predicting tensile behavior by considering the characteristics of individual precipitates occurring during a single- or triple-step aging treatment of Al–Mg–Si alloy. The solution treatment was conducted at 550 °C for 1 h and then quenched in water to reach room temperature. Different aging treatments were carried out: at 170 °C for 8 h and 210 °C for 4 h for single-step aging and at 140 °C for 80 min, 170 °C for 80 min, and 200 °C for 80 min for triple-step aging. The triple-step aging process resulted in excellent strength, even though a shorter processing time was required than for conventional single-step aging. This was due to the effects of precipitation strengthening and dispersion strengthening related to the various aging precipitates. In particular, it was verified that the calculated yield strength could be significantly varied according to the types and characteristics of each precipitation phase.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. Desmet, A. Haszler, A. Vieregge, Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 280, 37–49 (2000)

    Article  Google Scholar 

  2. G. Nurislamova, X. Sauvage, M. Murashkin, R. Islamgaliev, R. Valiev, Nanostructure and related mechanical properties of an Al–Mg–Si alloy processed by severe plastic deformation. Philos. Mag. Lett. 88, 459–466 (2008)

    Article  CAS  Google Scholar 

  3. L.P. Troeger, E.A. Starke, Microstructural and mechanical characterization of a superplastic 6XXX aluminum alloy. Mater. Sci. Eng. A 277, 102–113 (2000)

    Article  Google Scholar 

  4. H. Demir, S. Gündüz, The effects of aging on machinability of 6061 aluminium alloy. Mater. Des. 30, 1480–1483 (2009)

    Article  CAS  Google Scholar 

  5. V.H. Carneiro, H. Puha, T6 heat treatment impact on the random frequency vibration stress of Al–Si–Mg alloys. Met. Mater. Int. 25, 880–887 (2019)

    Article  CAS  Google Scholar 

  6. J.H. Cho, H.W. Kim, C.Y. Lim, S.B. Kang, Microstructure and mechanical properties of Al–Si–Mg alloys fabricated by twin roll casting and subsequent symmetric and asymmetric rolling. Met. Mater. Int. 20, 647–652 (2014)

    Article  CAS  Google Scholar 

  7. F. Ozturk, A. Sisman, S. Toros, S. Kilic, R.C. Picu, Influence of aging treatment on mechanical properties of 6061 aluminum alloy. Mater. Des. 31, 972–975 (2010)

    Article  CAS  Google Scholar 

  8. P.N. Rao, D. Singh, H.G. Brokmeier, R. Jayaganthan, Effect of ageing on tensile behavior of ultrafine grained Al 6061 alloy. Mater. Sci. Eng. A 641, 391–401 (2015)

    Article  CAS  Google Scholar 

  9. S.V. Emani, J. Benedyk, P. Nash, D. Chen, Double aging and thermomechanical heat treatment of AA7075 aluminum alloy extrusions. J. Mater. Sci. 44, 6384–6391 (2009)

    Article  CAS  Google Scholar 

  10. G. Zhang, J. Chen, H. Yan, B. Su, X. He, M. Ran, Effects of artificial aging on microstructure and mechanical properties of the Mg–4.5Zn–4.5Sn–2Al alloy. J. Alloys Compd. 592, 250–257 (2014)

    Article  CAS  Google Scholar 

  11. S. Gholami, E. Emadoddin, M. Tajally, E. Borhani, Friction stir processing of 7075 Al alloy and subsequent aging treatment. Trans. Nonferrous Met. Soc. China 25, 2847–2855 (2015)

    Article  CAS  Google Scholar 

  12. M. Mansourinejad, B. Mirzakhani, Influence of sequence of cold working and aging treatment on mechanical behaviour of 6061 aluminum alloy. Trans. Nonferrous Met. Soc. China 22, 2072–2079 (2012)

    Article  CAS  Google Scholar 

  13. M. Dixit, R.S. Mishra, K.K. Sankaran, Structure–property correlations in Al 7050 and Al 7055 high-strength aluminum alloys. Mater. Sci. Eng. A 478, 163–172 (2008)

    Article  Google Scholar 

  14. S. Nandy, K.K. Ray, D. Das, Process model to predict yield strength of AA6063 alloy. Mater. Sci. Eng. A 644, 413–424 (2015)

    Article  CAS  Google Scholar 

  15. MatCalc software. Available online: http://www.matcalc.at

  16. O.R. Myhr, Ø. Grong, S.J. Andersen, Modelling of the age hardening behaviour of Al–Mg–Si alloys. Acta Mater. 49, 65–75 (2001)

    Article  CAS  Google Scholar 

  17. H.R. Shercliff, M.F. Ashby, A process model for age hardening of aluminium alloys—I. The model. Acta Met. Mater. 38, 1789–1802 (1990)

    Article  CAS  Google Scholar 

  18. G.R. Totten, D.S. MacKenzie, Handbook of Aluminum: Physical Metallurgy and Processes (Marcel Dekker, Inc, New York, 2003)

    Book  Google Scholar 

  19. E. Hornbogen, E.A. Starke, Overview no. 102 theory assisted design of high strength low alloy aluminum. Acta Met. Mater. 41, 1–16 (1993)

    Article  CAS  Google Scholar 

  20. P.M. Kelly, The effect of particle shape on dispersion hardening. Scr. Metall. 6, 647–656 (1972)

    Article  CAS  Google Scholar 

  21. S.D. Harkness, J.J. Hren, An investigation of strengthening by spherical coherent G. P. zones. Met. Mater. Trans. B 1, 43–49 (1970)

    CAS  Google Scholar 

  22. S.J. Andersen, H.W. Zandbergen, J. Jansen, C. Traeholt, U. Tundal, O. Reiso, The crystal structure of the β″ phase in Al–Mg–Si alloys. Acta Mater. 46, 3283–3298 (1998)

    Article  CAS  Google Scholar 

  23. J.H. Hollomon, Tensile deformation. Trans. Metall. Soc. AIME 162, 268–290 (1945)

    Google Scholar 

  24. D.C. Ludwigson, Modified stress–strain relation for FCC metals and alloys. Met. Mater. Trans. B 2, 2825–2828 (1971)

    Article  CAS  Google Scholar 

  25. H.W. Swift, Plastic instability under plane stress. J. Mech. Phys. Solids 1, 1–18 (1952)

    Article  Google Scholar 

  26. E. Voce, The relationship between stress and strain for homogeneous deformation. J. Inst. Met. 74, 537–562 (1948)

    CAS  Google Scholar 

  27. J.E. Hockett, O.D. Sherby, Large strain deformation of polycrystalline metals at low homologous temperatures. J. Mech. Phys. Solids 23, 87–98 (1975)

    Article  CAS  Google Scholar 

  28. J. Philibert, A. Vignes, Y. Brechet, P. Combarde, Metallurgie-Du minerai au materiau, 2nd edn. (Dunod, Paris, 2002)

    Google Scholar 

  29. C. Ravi, C. Wolverton, First-principles study of crystal structure and stability of Al–Mg–Si–(Cu) precipitates. Acta Mater. 52, 4213–4227 (2004)

    Article  CAS  Google Scholar 

  30. A. Bahrami, Ph.D. Dissertation, Delft University of Technology (2010)

  31. S. Lee, Y. Estrin, B.C. De Cooman, Constitutive modeling of the mechanical properties of V-added medium. Metall. Mater. Trans. A 44, 3136–3146 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Korea Institute for Advancement of Technology Grant, funded by the Korea Government (MOTIE) (P0002019), as part of the Competency Development Program for Industry Specialists. This research was also financially supported from the Civil-Military Technology Cooperation Program (No. 18-CM-MA-15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyunjoo Choi or Seok-Jae Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Maeng, H., Choi, Y. et al. Constitutive Model of Triple-Step-Aged Al–Mg–Si Alloy Incorporating Precipitation Kinetics. Met. Mater. Int. 27, 4577–4585 (2021). https://doi.org/10.1007/s12540-020-00845-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00845-z

Keywords

Navigation