Skip to main content
Log in

The Stokes Paradox in Inhomogeneous Elastostatics

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We prove that the displacement problem of inhomogeneous elastostatics in a two–dimensional exterior Lipschitz domain has a unique solution with finite Dirichlet integral \(\boldsymbol{u}\), vanishing uniformly at infinity if and only if the boundary datum satisfies a suitable compatibility condition (Stokes paradox). Moreover, we prove that it is unique under the sharp condition \(\boldsymbol{u}=o(\log r)\) and decays uniformly at infinity with a rate depending on the elasticities. In particular, if these last ones tend to a homogeneous state at large distance, then \(\boldsymbol{u}=O(r^{-\alpha })\), for every \(\alpha <1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For constant \(\boldsymbol{\mathsf{C}}\) (homogeneous elasticity) it is sufficient to assume that \(\boldsymbol{\mathsf{C}}\) is strongly elliptic, i.e., there is \(\lambda _{0}>0\) such that \(\lambda _{0}|{\boldsymbol{a}}|^{2}|{\boldsymbol{b}}|^{2}\le { \boldsymbol{a}}\cdot \boldsymbol{\mathsf{C}}[{\boldsymbol{a}}\otimes { \boldsymbol{b}}]{\boldsymbol{b}}\), for all \({\boldsymbol{a}},{\boldsymbol{b}}\in {\mathbb{R}}^{2}\).

  2. It is worth recalling that for \(q=2\) Hardy’s inequality takes the form

    $$ \int \limits _{{\mathcal{I}}} \frac{|{\boldsymbol{u}}|^{2}}{r^{2}\log ^{2} r}\le 4\int \limits _{ \mathcal{I}}|\nabla {\boldsymbol{u}}|^{2}+\frac{2}{\log R_{0}}\int \limits _{0}^{2\pi } |{\boldsymbol{u}}|^{2}(R_{0},\theta ). $$
  3. By virtue of [14] \(\bar{q}\) cannot be too large.

  4. By abuse of notation, when \({\boldsymbol{f}}\) is a distribution the last integral is understood as a duality pairing.

References

  1. Campanato, S.: Sistemi ellittici in forma di divergenza. Regolarità all’interno. Scuola Norm. Sup., Pisa (1980), Quaderni

    MATH  Google Scholar 

  2. Chanillo, S., Li, Y.Y.: Continuity of solutions of uniformly elliptic equations in \({R}^{2}\). Manuscr. Math. 77, 415–433 (1992)

    Article  Google Scholar 

  3. De Giorgi, E.: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. UMI (4) 1, 135–137 (1968), English transl.: Ennio De Giorgi. Selected papers, Springer (2006)

    MathSciNet  MATH  Google Scholar 

  4. Dong, H., Kim, S.: Green’s matrices of second order elliptic systems with measurable coefficients in two dimensional domains. Trans. Am. Math. Soc. 361, 3303–3323 (2009)

    Article  MathSciNet  Google Scholar 

  5. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  Google Scholar 

  6. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady–State Problems, 2nd edn. Springer, New York (2011)

    MATH  Google Scholar 

  7. Galdi, G.P., Simader, C.G.: Existence, uniqueness and \(L^{q}\) estimates for the Stokes problem in an exterior domain. Arch. Ration. Mech. Anal. 112, 291–318 (1990)

    Article  Google Scholar 

  8. Giusti, E.: Metodi diretti nel calcolo delle variazioni. Unione Matematica Italiana, Bologna (1994). English translation - Direct methods in the calculus of variations, 2004

    MATH  Google Scholar 

  9. Gurtin, M.E.: The linear theory of elasticity. In: Truesedell, C. (ed.) Handbuch der Physik, vol. VIa/2. Springer, Berlin (1972)

    Google Scholar 

  10. John, F.: Plane Waves and Spherical Means Applied to Partial Differential Equations. Interscience, New York (1955)

    MATH  Google Scholar 

  11. Kenig, C.E., Ni, W.M.: On the elliptic equation \(Lu-k+K \exp [2u] = 0\). Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 12, 191–224 (1985)

    MATH  Google Scholar 

  12. Kondrat’ev, V.A., Oleinik, O.A.: Boundary value problems for a system in elasticity theory in unbounded domains. Korn inequalities. Usp. Mat. Nauk 43, 55–98 (1988) (Russian). English translation in Russ. Math. Surv. 43, 65–119 (1988)

    MathSciNet  MATH  Google Scholar 

  13. Meyers, N.G.: An \(L^{p}\)–estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3) 17, 189–206 (1963)

    MATH  Google Scholar 

  14. Piccinini, L., Spagnolo, S.: On the Hölder continuity of solutions of second order elliptic equations in two variables. Ann. Sc. Norm. Super. Pisa (III) 26, 391–402 (1972), available on line at http://www.numdam.org

    MATH  Google Scholar 

  15. Piccinini, L., Spagnolo, S.: Una valutazione della regolarità delle soluzioni di sistemi ellittici variazionali in due variabili. Ann. Sc. Norm. Super. Pisa (III) 27, 417–429 (1973), available on line at http://www.numdam.org

    MATH  Google Scholar 

  16. Russo, A., Tartaglione, A.: On the contact problem of classical elasticity. J. Elast. 99(1), 19–38 (2010)

    Article  MathSciNet  Google Scholar 

  17. Russo, A., Tartaglione, A.: Strong uniqueness theorems and the Phragmèn-Lindelöf principle in nonhomogeneous elastostatics. J. Elast. 102(2), 133–149 (2011)

    Article  Google Scholar 

  18. Russo, R.: On Stokes’ problem. In: Rannacher, R., Sequeira, A. (eds.) Advances in Mathematical Fluid Mechanics, pp. 473–512. Springer, Berlin (2010)

    Chapter  Google Scholar 

  19. Russo, R., Tartaglione, A.: The plane exterior boundary-value problem for nonhomogeneous fluids. J. Math. Fluid Mech. 22(1), 14 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  20. Russo, R., Simader, C.G.: On the exterior two–dimensional Dirichlet problem for elliptic equations. Ric. Mat. 58, 315–328 (2009)

    Article  MathSciNet  Google Scholar 

  21. Tartaglione, A.: On existence, uniqueness and the maximum modulus theorem in plane linear elastostatics for exterior domains. Ann. Univ. Ferrara 47(1), 89–106 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Taylor, J.L., Kim, S., Brown, R.M.: The Green function for elliptic systems in two dimensions. Commun. Partial Differ. Equ. 38, 1574–1600 (2013)

    Article  MathSciNet  Google Scholar 

  23. Vassiliev, V.A.: Applied Picard–Lefschetz Theory. Mathematical Surveys and Monographs AMS, vol. 97 (2002)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonsina Tartaglione.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferone, A., Russo, R. & Tartaglione, A. The Stokes Paradox in Inhomogeneous Elastostatics. J Elast 142, 35–52 (2020). https://doi.org/10.1007/s10659-020-09788-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-020-09788-3

Keywords

Mathematics Subject Classification (2010)

Navigation