Skip to main content
Log in

Effective Resonant Model and Simulations in the Time-Domain of Wave Scattering from a Periodic Row of Highly-Contrasted Inclusions

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The time-domain propagation of scalar waves across a periodic row of inclusions is considered in 2D. As the typical wavelength within the background medium is assumed to be much larger than the spacing between inclusions and the row width, the physical configuration considered is in the low-frequency homogenization regime. Furthermore, a high contrast between one of the constitutive moduli of the inclusions and of the background medium is also assumed. So the wavelength within the inclusions is of the order of their typical size, which can further induce local resonances within the microstructure. In Pham et al. (J. Mech. Phys. Solids 106:80–94, 2017), two-scale homogenization techniques and matched-asymptotic expansions have been employed to derive, in the harmonic regime, effective jump conditions on an equivalent interface. This homogenized model is frequency-dependent due to the resonant behavior of the inclusions. In this context, the present article aims at investigating, directly in the time-domain, the scattering of waves by such a periodic row of resonant scatterers. Its effective behavior is first derived in the time-domain and some energy properties of the resulting homogenized model are analyzed. Time-domain numerical simulations are then performed to illustrate the main features of the effective interface model obtained and to assess its relevance in comparison with full-field simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Auriault, J.L., Bonnet, G.: Dynamique des composites élastiques périodiques. Arch. Mech. 37(4–5), 269–284 (1985)

    MATH  Google Scholar 

  2. Auriault, J.L., Boutin, C.: Long wavelength inner-resonance cut-off frequencies in elastic composite materials. Int. J. Solids Struct. 49(23–24), 3269–3281 (2012). https://doi.org/10.1016/j.ijsolstr.2012.07.002

    Article  Google Scholar 

  3. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. AMS, Providence (2011)

    MATH  Google Scholar 

  4. Bonnet-Bendhia, A., Drissi, D., Gmati, N.: Simulation of muffler’s transmission losses by a homogenized finite element method. J. Comput. Acoust. 12(3), 447–474 (2004)

    Article  MathSciNet  Google Scholar 

  5. Bouchitté, G., Bourel, C., Felbacq, D.: Homogenization of the 3D Maxwell system near resonances and artificial magnetism. C. R. Math. 347(9–10), 571–576 (2009). https://doi.org/10.1016/j.crma.2009.02.027

    Article  MathSciNet  MATH  Google Scholar 

  6. Cornaggia, R., Bellis, C.: Tuning effective dynamical properties of periodic media by FFT-accelerated topological optimization. Int. J. Numer. Methods Eng. (2020). https://doi.org/10.1002/nme.6352

    Article  MathSciNet  Google Scholar 

  7. David, M., Pideri, C., Marigo, J.J.: Homogenized interface model describing inhomogeneities located on a surface. J. Elast. 109(2), 153–187 (2012)

    Article  MathSciNet  Google Scholar 

  8. Delourme, B.: Modèles asymptotiques des interfaces fines et périodiques en électromagnétisme. PhD thesis—Université, Pierre et Marie Curie—Paris VI (2010)

  9. Felbacq, D., Bouchitté, G.: Theory of mesoscopic magnetism in photonic crystals. Phys. Rev. Lett. 94(18), 183902 (2005). https://doi.org/10.1103/physrevlett.94.183902

    Article  ADS  Google Scholar 

  10. Lombard, B., Piraux, J.: Numerical treatment of two-dimensional interfaces for acoustic and elastic waves. J. Comput. Phys. 195(1), 90–116 (2004). https://doi.org/10.1016/j.jcp.2003.09.024

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Lombard, B., Piraux, J., Gélis, C., Virieux, J.: Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves. Geophys. J. Int. 172(1), 252–261 (2008). https://doi.org/10.1111/j.1365-246x.2007.03620.x

    Article  ADS  Google Scholar 

  12. Lombard, B., Maurel, A., Marigo, J.J.: Numerical modeling of the acoustic wave propagation across an homogenized rigid microstructure in the time domain. J. Comput. Phys. 335, 558–577 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. Lorcher, F., Munz, C.D.: Lax-Wendroff-type schemes of arbitrary order in several space dimensions. IMA J. Numer. Anal. 27(3), 593–615 (2006). https://doi.org/10.1093/imanum/drl031

    Article  MathSciNet  MATH  Google Scholar 

  14. Ma, G., Yang, M., Xiao, S., Yang, Z., Sheng, P.: Acoustic metasurface with hybrid resonances. Nat. Mater. 13(9), 873–878 (2014). https://doi.org/10.1038/nmat3994

    Article  ADS  Google Scholar 

  15. Marigo, J.J., Maurel, A.: Homogenization models for thin rigid structured surfaces and films. J. Acoust. Soc. Am. 140(1), 260–273 (2016)

    Article  ADS  Google Scholar 

  16. Marigo, J.J., Pideri, C.: The effective behaviour of elastic bodies containing microcracks or microholes localized on a surface. Int. J. Damage Mech. 20, 1151–1177 (2011)

    Article  Google Scholar 

  17. Marigo, J.J., Maurel, A., Pham, K., Sbitti, A.: Effective dynamic properites of a row of elastic inclusions: the case of scalar shear waves. J. Elast. 128(2), 265–289 (2017)

    Article  Google Scholar 

  18. Maurel, A., Mercier, J.F., Pham, K., Marigo, J.J., Ourir, A.: Enhanced resonance of sparse arrays of Helmholtz resonators—application to perfect absorption. J. Acoust. Soc. Am. 145(4), 2552–2560 (2019). https://doi.org/10.1121/1.5098948

    Article  ADS  Google Scholar 

  19. Maurel, A., Pham, K., Marigo, J.J.: Homogenization of thin 3d periodic structures in the time domain–effective boundary and jump conditions. In: Romero-García, V., Hladky-Hennion, A.C. (eds.) Fundamentals and Applications of Acoustic Metamaterials. Wiley, New York (2019). https://doi.org/10.1002/9781119649182

    Chapter  MATH  Google Scholar 

  20. Pham, K., Maurel, A., Marigo, J.J.: Two scale homogenization of a row of locally resonant inclusions—the case of shear waves. J. Mech. Phys. Solids 106, 80–94 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. Sanchez-Hubert, J., Sanchez-Palencia, E.: Introduction aux méthodes asymptotiques et à l’homogénéisation. Collection Mathématiques Appliquées pour la Maîtrise (1992)

    Google Scholar 

  22. Schwan, L., Umnova, O., Boutin, C.: Sound absorption and reflection from a resonant metasurface: homogenisation model with experimental validation. Wave Motion 72, 154–172 (2017). https://doi.org/10.1016/j.wavemoti.2017.02.004

    Article  MATH  Google Scholar 

  23. Schwartzkopff, T., Dumbser, M., Munz, C.D.: Fast high order ADER schemes for linear hyperbolic equations. J. Comput. Phys. 197(2), 532–539 (2004). https://doi.org/10.1016/j.jcp.2003.12.007

    Article  ADS  MATH  Google Scholar 

  24. Sheng, P., Zhang, X., Liu, Z., Chan, C.: Locally resonant sonic materials. Physica B, Condens. Matter 338(1–4), 201–205 (2003). https://doi.org/10.1016/s0921-4526(03)00487-3

    Article  ADS  Google Scholar 

  25. Touboul, M., Lombard, B., Bellis, C.: Time-domain simulation of wave propagation across resonant meta-interfaces. J. Comput. Phys. 414, 109474 (2020). https://doi.org/10.1016/j.jcp.2020.109474

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhikov, V.V.: On an extension of the method of two-scale convergence and its applications. Sb. Math. 191(7), 973–1014 (2000). https://doi.org/10.1070/sm2000v191n07abeh000491

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhikov, V.V.: On spectrum gaps of some divergent elliptic operators with periodic coefficients. St. Petersburg Math. J. 16(05), 773–791 (2005). https://doi.org/10.1090/s1061-0022-05-00878-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge the stimulating exchanges promoted by the GDR “MecaWave” of the French Centre National de la Recherche Scientifique. CB, BL and MT are thankful to Rémi Cornaggia for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Touboul.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Frequency-Domain Formulation

With the effective model (37) being derived in the time domain, this section focuses on assessing its equivalence with the frequency-domain formulation obtained in [20]. First, the frequency Fourier transform is defined:

$$ \mathscr{F}[f](\boldsymbol{X},\omega )=\hat{f}(\boldsymbol{X},\omega ) = \int _{ \mathbb{R}}f(\boldsymbol{X},t)e^{-i\omega t}\,\mathrm{d}t, $$

along with the convolution product:

$$ [f\ast g]({t})= \int _{\mathbb{R}}f(t-t')g(t)\,\mathrm{d}t'. $$

Due to the final effective jump condition (37), we seek closed-form identity for the field \(W_{i}\) solution of (38). To do so, let us consider the time-domain Green’s function associated with the inclusion domain \(\varOmega _{i}\) and a source point \(\boldsymbol{y}_{0}\), i.e., the field \(G:(\boldsymbol{y},t)\mapsto G(\boldsymbol{y},\boldsymbol{y}_{0}, t)\) that is the fundamental solution of the problem:

$$ \left \{ \begin{aligned} &\frac{\partial ^{2}G}{\partial t^{2}}(\boldsymbol{y},\boldsymbol{y}_{0}, t)- \frac{\mu _{i}}{\rho _{i}h^{2}}\Delta _{\boldsymbol{y}} G(\boldsymbol{y},\boldsymbol{y}_{0}, t) = \delta (\boldsymbol{y}-\boldsymbol{y}_{0})\delta (t) && (\boldsymbol{y}\in \varOmega _{i}), \\ &G(\boldsymbol{y},\boldsymbol{y}_{0}, t) = 0 && (\boldsymbol{y}\in \partial \varOmega _{i}), \\ & G(\boldsymbol{y},\boldsymbol{y}_{0},0) = \frac{\partial G}{\partial t}(\boldsymbol{y}, \boldsymbol{y}_{0},0) = 0 && (\boldsymbol{y}\in \varOmega _{i}). \end{aligned} \right . $$

The equations (38) at time \((t-t')\) are multiplied by \(G\) taken at time \(t'\) and integrated on \(\varOmega _{i}\times [0,t]\), which leads to

$$ \int _{\varOmega _{i}}\left \{ \left [ \frac{\partial ^{2} W_{i}}{\partial t^{2}}*G\right ]\!(t)- \frac{\mu _{i}}{\rho _{i}h^{2}}\big[\Delta _{\boldsymbol{y}} W_{i}*G\big](t) \right \} \mathrm{d}\boldsymbol{y}=0. $$

Integrating by parts twice, the first term in time and the second term in space, respectively, and using the boundary conditions for \(W_{i}\) and \(G\) yields:

$$ W_{i}(\boldsymbol{y}_{0},X_{2},t) = -\frac{\mu _{i}}{\rho _{i}h^{2}}\left [ \left \langle V^{h} (\cdot ,X_{2},\cdot ) \right \rangle _{a}*\int _{ \partial \varOmega _{i}}\!\!\boldsymbol{\nabla }_{\!\boldsymbol{y}} G(\boldsymbol{y},\boldsymbol{y}_{0}, \cdot )\cdot \boldsymbol{n}\,\mathrm{d}\ell \right ]\!(t). $$

Going back to (37), we now get formally in the frequency domain:

$$\begin{aligned} &\mathscr{F}\left [\rho _{i}\int _{\varOmega _{i}} \frac{\partial W_{i}}{\partial t}\,\mathrm{d}\boldsymbol{y}\right ](\boldsymbol{X}, \omega ) \\ &\quad =\frac{\rho _{i}}{\rho _{m}}\left \langle \operatorname{div} \hat{\boldsymbol{\varSigma }}^{h}(\cdot ,X_{2},\omega ) \right \rangle _{a} \int _{\varOmega _{i}}\left \{ -\frac{\mu _{i}}{\rho _{i}h^{2}}\int _{ \partial \varOmega _{i}}\boldsymbol{\nabla }_{\boldsymbol{y}_{0}} \hat{G}(\boldsymbol{y}, \boldsymbol{y}_{0},\omega )\cdot \boldsymbol{n}\,\mathrm{d}\ell _{0}\right \} \mathrm{d}\boldsymbol{y}, \end{aligned}$$
(49)

where we have used the identity \(i\omega \rho _{m}\hat{V}^{h}=\operatorname{div}\hat{\boldsymbol{\varSigma }}^{h}\) and the fact that \(\hat{G}(\boldsymbol{y},\boldsymbol{y}_{0},\omega )=\hat{G}(\boldsymbol{y}_{0},\boldsymbol{y},\omega )\). We define the field \(\hat{V}_{k_{m}}\) as

$$ \hat{V}_{k_{m}}(\boldsymbol{y},\omega )=-\frac{\mu _{i}}{\rho _{i}h^{2}}\int _{ \partial \varOmega _{i}}\!\!\boldsymbol{\nabla _{y_{0}}}\hat{G}(\boldsymbol{y},{\boldsymbol{y}}_{0}, \omega )\cdot \boldsymbol{n}\,\mathrm{d}\ell _{0}. $$
(50)

Owing to the following relation satisfied by \(G\) in the frequency domain

$$ \Delta _{\boldsymbol{y}}\hat{G}(\boldsymbol{y},\boldsymbol{y}_{0}, \omega )+ \frac{\rho _{i}\mu _{m}}{\rho _{m}\mu _{0}}\hat{G}(\boldsymbol{y},\boldsymbol{y}_{0}, \omega )=-\frac{\rho _{i}h^{2}}{\mu _{i}}\delta (\boldsymbol{y}-\boldsymbol{y}_{0}), $$

then it turns out that \(\hat{V}_{k_{m}}\) is the solution of the following problem:

$$ \left \{ \begin{aligned} &\Delta _{\boldsymbol{y}} \hat{V}_{k_{m}}(\boldsymbol{y},\omega )+{\kappa (k_{m})}^{2} \, \hat{V}_{k_{m}} (\boldsymbol{y},\omega )= 0 &&(\boldsymbol{y}\in \varOmega _{i}), \\ &\hat{V}_{k_{m}}(\boldsymbol{y},\omega )=1 && (\boldsymbol{y}\in \partial \varOmega _{i}), \end{aligned} \right . $$
(51)

where one has defined \({\kappa (k_{m})}=k_{m} h \sqrt{ \frac{\rho _{i}\mu _{m}}{\rho _{m}\mu _{i}}}\).

Therefore, provided that the Fourier transforms are well-defined, the time-domain model developed here is in agreement with the frequency-domain model of [20], see Equation (44) in the latter:

$$ \left \{ \begin{aligned} &\left [\!\![\hat{V}^{h} \right ]\!\!]_{a} =h \left \{ B \left \langle \frac{\partial \hat{V}^{h}}{\partial X_{1}} \right \rangle _{\!\!a}+ B_{2}\left \langle \frac{\partial \hat{V}^{h}}{\partial X_{2}} \right \rangle _{\!\!a} \right \} &&(X_{2}\in \mathbb{R}) \\ & \left [\!\![\hat{\varSigma }^{h}_{1} \right ]\!\!]_{a} = h \left \{ S\left \langle \frac{\partial \hat{\varSigma }^{h}_{1}}{\partial X_{1}} \right \rangle _{\!\!a}+C_{1}\left \langle \frac{\partial \hat{\varSigma }_{1}^{h}}{\partial X_{2}} \right \rangle _{ \!\!a}+C_{2}\left \langle \frac{\partial \hat{\varSigma }^{h}_{2}}{\partial X_{2}} \right \rangle _{\!\!a}+D(k_{m})\left \langle \operatorname{div} \hat{\boldsymbol{\varSigma }}^{h} \right \rangle _{a} \right \} &&(X_{2}\in \mathbb{R}), \end{aligned} \right . $$
(52)

where, due to (49) and (50), one has:

$$ D(k_{m})=\frac{\rho _{i}}{\rho _{m}}\int _{\varOmega _{i}}\hat{V}_{k_{m}}( \boldsymbol{y})\,\mathrm{d}\boldsymbol{y}. $$
(53)

Consequently, the agreement of the time-domain effective model with the frequency-dependent jump conditions is established. However, thanks to the time-domain formulation, we were able to perform an energy analysis and provide a sufficient condition for the effective model to be stable.

As shown in [20], the solution \(\hat{V}_{k_{m}}\) to (51) can be found as an expansion onto the function basis of the eigensystem \((\lambda _{r},P_{r})_{r\geq 1}\) that is associated with the following self-adjoint eigenvalue problem within the inclusion:

$$ \left \{ \begin{aligned} &\Delta _{\boldsymbol{y}} P_{r}(\boldsymbol{y}) + \lambda _{r} P_{r}(\boldsymbol{y}) = 0 && \mbox{ in $\varOmega _{i}$,} \\ & P_{r}(\boldsymbol{y}) = 0 && \mbox{ on $\partial \varOmega _{i}$.} \end{aligned} \right . $$
(54)

In particular, let us define the resonant frequencies \(\{ k_{r} \}_{r\geq 1}\) and the real-valued coefficients \(\{\alpha _{r}\}_{r\geq 0}\) as follows

$$ \alpha _{0}=\int _{\varOmega _{i}}\mathrm{d}\boldsymbol{y} \qquad \alpha _{r} = \int _{\varOmega _{i}}P_{r}(\boldsymbol{y})\,\mathrm{d}\boldsymbol{y} \qquad \text{and} \qquad k_{r} = \frac{1}{h}\sqrt{ \frac{\rho _{m}\mu _{i}}{\rho _{i}\mu _{m}}\lambda _{r}}. $$
(55)

Then the term \(D(k_{m})\) in (53) can be recast as the following infinite series:

$$ D(k_{m})=\frac{\rho _{i}}{\rho _{m}}\left \{ \alpha _{0}-\sum _{r\geq 1} \alpha _{r}^{2} \frac{k_{m}^{2}}{k_{m}^{2}-k_{r}^{2}}\right \} . $$
(56)

Note that, due to the expression of \(\alpha _{r}\) in (55), the eigenmodes \(P_{r}\) that have zero mean value do not contribute to the effective model obtained. Moreover, this expression of \(D(k_{m})\) will be used later on in the numerical method chosen to handle this non-local in time jump conditions.

Appendix B: Positivity of the Parameter \(B\)

We seek a lower bound for the parameter \(B\) that is defined by (36) and (22). It is useful for the energy analysis of Sect. 2.2, see Equation (44). To do so, we consider the variational formulation (45) that is satisfied by the field \(\varPhi ^{(1)}\). Moreover, let us define the following quadratic functional:

$$ \mathscr {L}\big(\tilde{\varPhi }\big)= \int _{\varOmega \backslash \varOmega _{i}} \big[\frac{1}{2}\boldsymbol{\nabla }_{\!\boldsymbol{y}}\tilde{\varPhi }({\boldsymbol{y}})+\boldsymbol{e}_{1} \big]\cdot \boldsymbol{\nabla }_{\!\boldsymbol{y}}\tilde{\varPhi }({\boldsymbol{y}})\,\mathrm{d} \boldsymbol{y}-\lim _{y_{1}\to +\infty }\int _{-1/2}^{1/2}\big[\tilde{\varPhi }(y_{1},y_{2})- \tilde{\varPhi }(-y_{1},y_{2})\big]\mathrm{d}y_{2}. $$

Then, owing to (45), the field \(\varPhi ^{(1)}\) minimizes ℒ on \(\mathscr {H}^{\text{per}}_{0,1}(\varOmega \backslash \varOmega _{i})\) and one has

$$ \mathscr {L}\big(\varPhi ^{(1)}\big)=-\frac{B_{1}}{2}+\frac{1}{2}\int _{ \varOmega \backslash \varOmega _{i}}\boldsymbol{\nabla }_{\!\boldsymbol{y}}{\varPhi ^{(1)}} \cdot \boldsymbol{e}_{1}\,\mathrm{d}\boldsymbol{y}. $$
(57)

To have an explicit expression of the second term, we multiply the cell problem (21) by the function \(y_{1}\) and we integrate in the bounded domain \(\varOmega ^{b}\backslash \varOmega _{i}\), i.e.,

$$ \int _{\varOmega ^{b}\backslash \varOmega _{i}}\Delta _{\boldsymbol{y}} (\varPhi ^{(1)}+y_{1})y_{1} \,\mathrm{d}\boldsymbol{y}=0. $$

By integration by parts and due to the periodicity and boundary conditions for \(\varPhi ^{(1)}\), this equation leads to

$$\begin{aligned} &\int _{-1/2}^{1/2}\big[\boldsymbol{\nabla }_{\!\boldsymbol{y}}\varPhi ^{(1)}(-y_{1}^{b},y_{2})+ \boldsymbol{\nabla }_{\!\boldsymbol{y}}\varPhi ^{(1)}(y_{1}^{b},y_{2}) \big]\cdot y_{1}^{b} \boldsymbol{e}_{1}\,\mathrm{d}y_{2}+ 2y_{1}^{b} \\ &\quad {}-\int _{\varOmega ^{b}\backslash \varOmega _{i}}\boldsymbol{\nabla }_{\!\boldsymbol{y}}\varPhi ^{(1)}\cdot \boldsymbol{e}_{1}\, \mathrm{d}\boldsymbol{y}-\int _{\varOmega ^{b}\backslash \varOmega _{i}}\mathrm{d} \boldsymbol{y}=0. \end{aligned}$$

Given that the last integral is equal to \((2y_{1}^{b}-e\varphi /h)\), then considering the previous identity in the limit \(y_{1}^{b}\to +\infty \) entails

$$ \int _{\varOmega \backslash \varOmega _{i}}\boldsymbol{\nabla }_{\!\boldsymbol{y}}{\varPhi ^{(1)}} \cdot \boldsymbol{e}_{1}\,\mathrm{d}\boldsymbol{y}=\frac{e\varphi }{h}, $$

and thus, from (57), one gets

$$ \mathscr {L}\big(\varPhi ^{(1)}\big)=-\frac{B_{1}}{2}+\frac{e\varphi }{2h}. $$

As a consequence and due to the minimization principle for ℒ, one obtains the following lower bound for \(B_{1}\):

$$ B_{1}\geq \frac{e\varphi }{h} - 2\mathscr {L}\big(\tilde{\varPhi }\big) \qquad \forall \tilde{\varPhi }\in \mathscr {H}^{\text{per}}_{0,1}(\varOmega \backslash \varOmega _{i}). $$
(58)

To have an explicit bound, we define \(\tilde{\varPhi }\in \mathscr {H}^{\text{per}}_{0,1}(\varOmega \backslash \varOmega _{i})\) as the piecewise linear function:

$$ \tilde{\varPhi }(\boldsymbol{y}) = 2\tilde{\beta }h\frac{y_{1}}{e} \quad \text{if } 0 \leq |y_{1}| \leq \frac{e}{2h} \quad \text{and} \quad \tilde{\varPhi }(\boldsymbol{y}) =\tilde{\beta } \operatorname{sign}(y_{1}) \quad \text{if } |y_{1}| \geq \frac{e}{2h} $$

with \(\tilde{\beta }\) a constant, from which one gets:

$$ \mathscr {L}\big(\tilde{\varPhi }\big)=2\frac{h}{e}(1-\varphi ){ \tilde{\beta }}^{2}-2\tilde{\beta }\varphi . $$

As a quadratic function of \(\tilde{\beta }\), then \(\mathscr {L}\big (\tilde{\varPhi }\big )\) reaches a minimum for \(\tilde{\beta }=\frac{e\varphi }{2h(1-\varphi )}\), which inserted in (58) yields:

$$ B_{1}\geq \frac{e\varphi }{h} + \frac{e\varphi ^{2}}{h(1-\varphi )}. $$

To conclude, using (36), one finally obtains the following positive lower bound for \(B\):

$$ B\geq \frac{a}{h}+\frac{e\varphi }{h}+ \frac{e\varphi ^{2}}{h(1-\varphi )}\geq 0. $$

Appendix C: Positivity of the Term \((S-C_{2})\)

We seek a lower bound for the term \((S-C_{2})\) that is featured in (44) and is defined by (36) and (30). Let us introduce \(\boldsymbol{\varPsi }^{(2)} = (\boldsymbol{\nabla }_{\!\boldsymbol{y}}{\varPhi }^{(2)}+\boldsymbol{e}_{2})\). Owing to the definition of the field \({\varPhi }^{(2)}\) as the solution to (21) and based on the definition of the functional space \(\mathscr {H}^{\text{per}}_{0,2}(\varOmega \backslash \varOmega _{i})\) we consider in addition the following admissibility space:

$$\begin{aligned} &\mathscr {W}^{\text{per}}(\varOmega \backslash \varOmega _{i})=\Big\{ (\boldsymbol{f}- \boldsymbol{e}_{2})\in L^{2}_{\text{loc}}(\varOmega \backslash \varOmega _{i}) \text{ with } \boldsymbol{f}(y_{1},y_{2}+1)=\boldsymbol{f}(y_{1},y_{2}) \text{ for all } \boldsymbol{y}\in \varOmega \backslash \varOmega _{i} \\ &\quad \text{and such that }\operatorname{div}_{\boldsymbol{y}}\boldsymbol{f}=0 \text{ in } \varOmega \backslash \varOmega _{i},\ \boldsymbol{f}\cdot \boldsymbol{n}=0 \text{ on } \partial \varOmega _{i} \text{ and } \lim \limits _{y_{1}\to \pm \infty } \boldsymbol{f}=\boldsymbol{e}_{2}\Big\} , \end{aligned}$$

so that \(\boldsymbol{\varPsi }^{(2)}\in \mathscr {W}^{\text{per}}(\varOmega \backslash \varOmega _{i})\). We also introduce for any \(\tilde{\boldsymbol{\varPsi }}\in \mathscr {W}^{\text{per}}(\varOmega \backslash \varOmega _{i})\) the following functional:

$$ \mathscr {M}\big(\tilde{\boldsymbol{\varPsi }}\big) = \frac{1}{2}\int _{\varOmega \backslash \varOmega _{i}}\big|\tilde{\boldsymbol{\varPsi }}-\boldsymbol{e}_{2}\big|^{2}\, \mathrm{d}\boldsymbol{y}. $$

Upon noticing that for any admissible field \(\tilde{\boldsymbol{\varPsi }}\) the derivative of ℳ in \(\mathscr {W}^{\text{per}}(\varOmega \backslash \varOmega _{i})\) satisfies

$$ \mathscr {M}'\big[\boldsymbol{\varPsi }^{(2)}\big] \tilde{\boldsymbol{\varPsi }} = \int _{ \varOmega \backslash \varOmega _{i}} \boldsymbol{\nabla }_{\!\boldsymbol{y}}{\varPhi }^{(2)} \cdot \tilde{\boldsymbol{\varPsi }} \,\mathrm{d}\boldsymbol{y} = \int _{\partial (\varOmega \backslash \varOmega _{i})} {\varPhi }^{(2)}\tilde{\boldsymbol{\varPsi }}\cdot \boldsymbol{n} \, \mathrm{d}\boldsymbol{y} - \int _{\varOmega \backslash \varOmega _{i}} {\varPhi }^{(2)} \operatorname{div}_{\boldsymbol{y}}\tilde{\boldsymbol{\varPsi }} \,\mathrm{d}\boldsymbol{y} = 0, $$

then \(\boldsymbol{\varPsi }^{(2)}\) minimizes the quadratic functional ℳ. Moreover, from the cell problem (21) one has

$$ \int _{\varOmega \backslash \varOmega _{i}}\Delta _{\boldsymbol{y}}(\varPhi ^{(2)}+y_{2}) \varPhi ^{(2)}\,\mathrm{d}\boldsymbol{y}=0. $$

By integration by parts and due to the periodicity and boundary conditions for \(\varPhi ^{(2)}\) and its derivatives, this leads to

$$ C_{2}=\int _{\varOmega \backslash \varOmega _{i}}\big|\boldsymbol{\nabla }_{\!\boldsymbol{y}} \varPhi ^{(2)}\big|^{2}\,\mathrm{d}\boldsymbol{y}=2\mathscr {M}\big(\boldsymbol{\varPsi }^{(2)} \big). $$

As a consequence, we obtain that \(C_{2}\leq 2\mathscr {M}\big (\tilde{\boldsymbol{\varPsi }}\big )\) for all \(\tilde{\boldsymbol{\varPsi }}\in \mathscr {W}^{\text{per}}(\varOmega \backslash \varOmega _{i})\). Finally, we define \(\tilde{\boldsymbol{\varPsi }}\) as

$$ \tilde{\boldsymbol{\varPsi }}(\boldsymbol{y}) = \boldsymbol{0} \quad \text{if } 0 \leq |y_{1}|< \frac{e}{2h} \quad \text{and} \quad \tilde{\boldsymbol{\varPsi }}(\boldsymbol{y}) = \boldsymbol{e}_{2} \quad \text{if } |y_{1}|\geq \frac{e}{2h} $$

from which one gets \(\mathscr {M}(\tilde{\boldsymbol{\varPsi }}) = e(1-\varphi )/(2h)\). From the minimization principle, we finally obtain the following lower bound \((S-C_{2}) \geq (a-e)/h\), which proves that \((S-C_{2})\geq 0\) if \(a\geq e\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touboul, M., Pham, K., Maurel, A. et al. Effective Resonant Model and Simulations in the Time-Domain of Wave Scattering from a Periodic Row of Highly-Contrasted Inclusions. J Elast 142, 53–82 (2020). https://doi.org/10.1007/s10659-020-09789-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-020-09789-2

Keywords

Mathematics Subject Classification

Navigation