Skip to main content
Log in

Advances in anisotropy of plastic behaviour and formability of sheet metals

  • IJMF 10th Anniversary - Advances in Material Forming
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

This paper reviews the most recent models for description of the anisotropic plastic behavior and formability of sheet metals. After a brief review of classic isotropic yield functions, recent advanced anisotropic criteria for polycrystalline materials of various crystal structures and their applications to cup drawing are presented. Next, the discussion focuses on novel formulations of anisotropic hardening. A brief review of the experimental methods used for characterizing and modeling the anisotropic plastic behavior of metallic sheets and tubes under biaxial loading is presented. The experimental methods and theoretical models used for measuring and predicting the limit strains, development of new tests for determining the Forming Limit Curves (FLC), as well as on studying the influence of various material or process parameters on the limit strains are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Morestin F, Boivin M (1996) On the necessity of taking into account the variation in the young modulus with plastic strain in elastic-plastic software. Nucl Eng Des 162:107–116

    Google Scholar 

  2. Wagoner RH, Lim H, Lee M-G (2013) Advanced issue in springback. Int J Plast 45:3–20

    Google Scholar 

  3. Sun L, Wagoner RH (2011) Complex unloading behavior: nature of the deformation and its consistent constitutive representation. Int J Plast 27:1126–1144

    MATH  Google Scholar 

  4. Yoshida F, Amaishi T (2020) Model for description of nonlinear unloading-reloading stress-strain response with special reference to plastic-strain dependent chord modulus. Int J Plast 130:102708

    Google Scholar 

  5. Chaboche JL (1986) Time-independent constitutive theories for cyclic plasticity. Int J Plast 2:149–188

    MATH  Google Scholar 

  6. Yoshida F, Uemori T (2002) A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation. Int J Plast 18:661–686

    MATH  Google Scholar 

  7. Yoshida F, Uemori T (2003) A model of large-strain cyclic plasticity and its application to springback simulation. Int J Mech Sci 45:1687–1702

    MATH  Google Scholar 

  8. Barlat F (1987) Crystallographic texture, anisotropic yield surfaces and forming limits of sheet metals. Mater Sci Eng 91:55–72

    Google Scholar 

  9. Maeda T, Noma N, Kuwabara T, Barlat F, Korkolis YP (2018) Measurement of the strength differential effect of DP980 steel sheet and experimental validation using pure bending test. J Mater Process Technol 256:247–253

    Google Scholar 

  10. Steglich D, Tian X, Bohlen J, Kuwabara T (2014) Mechanical testing of thin sheet magnesium alloys in biaxial tension and uniaxial compression. Exp Mech 54:1247–1258

    Google Scholar 

  11. Aretz H, Keller S (2011) On the non-balanced biaxial stress state in bulge-testing. Proc. 10th Int Conf Technol plasticity, steel research international, Special Edition: 738–743

  12. Kuwabara T, Van Bael A, Iizuka E (2002) Measurement and analysis of yield locus and work hardening characteristics of steel sheets with different r-values. Acta Mater 50:3717–3729

    Google Scholar 

  13. Nagano C, Kuwabara T, Shimada Y (2018) Kawamura R, (2018) measurement of differential hardening under biaxial stress of pure titanium sheet. IOP Conf Ser Mater Sci Eng 418:012090

    Google Scholar 

  14. Hippke H, Hirsiger S, Berisha B, Hora P (2020) Optimized and validated prediction of plastic yielding supported by cruciform experiments and crystal plasticity. Int J Mater Form. https://doi.org/10.1007/s12289-020-01569-6

  15. Suh YS, Saunders FI, Wagoner RH (1996) Anisotropic yield functions with plastic-strain- induced anisotropy. Int J Plast 12:417–438

    MATH  Google Scholar 

  16. Kuwabara T, Mori T, Asano M, Hakoyama T, Barlat F (2017) Material modeling of 6016-O and 6016-T4 aluminum alloy sheets and application to hole expansion forming simulation. Int J Plast 93:164–186

    Google Scholar 

  17. ISO 16808 (2014) Metallic materials −Sheet and strip − Determination of biaxial stress-strain curve by means of bulge test with optical measuring systems

  18. ISO 16842 (2014) Metallic materials −Sheet and strip −Biaxial tensile testing method using a cruciform test piece

  19. Rusinek A, Klepaczko JR (2001) Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress. Int J Plast 17:87–115

    Google Scholar 

  20. Bouvier S, Haddadi H, Levee P, Teodosiu C (2006) Simple shear tests: experimental techniques and characterization of the plastic anisotropy of rolled sheets at large strains. J Mater Process Technol 172:96–103

    Google Scholar 

  21. Rauch EF (2009) Plastic behavior of metals at large strains: experimental studies involving simple shear. J Eng Mater Technol 131:011107

    Google Scholar 

  22. An YG, Vegter H, Elliott L (2004) A novel and simple method for the measurement of plane strain work hardening. J Mater Process Technol 155–156:1616–1622

    Google Scholar 

  23. Hu JJ, Chen GW, Liu YC, Hsu SS (2014) Influence of specimen geometry on the estimation of the planar biaxial mechanical properties of cruciform specimens. Exp Mech 54:615–631

    Google Scholar 

  24. Nasdala L, Husni AH (2020) Determination of yield surfaces in accordance with ISO 16842 using an optimized cruciform test specimen. Exp Mech. https://doi.org/10.1007/s11340-020-00601-9

  25. Pierron F, Grédiac M (2012) The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements. Springer, New-York

    Google Scholar 

  26. Rossi M, Pierron F (2012) Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields. Comput Mech 49:53–71

    MATH  Google Scholar 

  27. Coppieters S, Kuwabara T (2014) Identification of post-necking hardening phenomena in ductile sheet metal. Exp Mech 54:1355–1371

    Google Scholar 

  28. Marek A, Davis FM, Rossi M, Pierron F (2019) Extension of the sensitivity-based virtual fields to large deformation anisotropic plasticity. Int J Mater Form 12:457–476

    Google Scholar 

  29. Gaber C, Jocham D, Weiss HA, Böttcher O, Volk W (2017) Evaluation of non-linear strain paths using generalized forming limit concept and a modification of the time dependent evaluation method. Int J Mat Form 10:345–351

    Google Scholar 

  30. Volk W, Hoffmann H, Suh J, Kim J (2012) Failure prediction for nonlinear strain paths in sheet metal forming. CIRP Ann Manuf Technol 61:259–262

    Google Scholar 

  31. Stoughton TB, Yoon JW (2012) Path independent forming limits in strain and stress spaces. Int J Solids Struct 49:3616–3625

    Google Scholar 

  32. Stoughton TB, Yoon JW (2014) Stress-based forming limit curves. In: Hashmi MSJ (ed) Comprehensive Materials Processing (vol 1), Elsevier, Amsterdam, pp. 71–84

  33. ISO 12004-1; 12004–2 (2008) Metallic materials-sheet and strip-Determination of the Forming Limit Curves. Part 1: Measurement and application of forming-limit diagrams in the press shop Part 2: Determination of forming-limit curves in the laboratory

  34. Hotz W, Merklein M, Kuppert A, Friebe H, Klein M (2013) Time dependent FLC determination – comparison of different algorithms to detect the onset of unstable necking before fracture. Key Eng Mater 549:397–404

    Google Scholar 

  35. Merklein M, Biasutti M (2013) Development of a biaxial tensile machine for characterization of sheet metals. J Mater Process Technol 213:939–946

    Google Scholar 

  36. Volk W, Hora P (2011) New algorithm for a robust user-independent evaluation of beginning instability for the experimental FLC determination. Int J Mat Form 4:339–346

    Google Scholar 

  37. Martínez-Donaire A, Garcia-Lomas F, Vallellano C (2014) New approaches to detect the onset of localised necking in sheets under through-thickness strain gradients. Mat Des 57:135–145

    Google Scholar 

  38. Wang K, Carsley JE, He B, Li J, Zhang L (2014) Measuring forming limit strains with digital image correlation analysis. J Mater Process Technol 214:1120–1130

    Google Scholar 

  39. Dicecco S, Butcher C, Worswick M, Boettcher E, Chu F, Shi C (2016) Determination of forming limit diagrams of AA6013-T6 aluminum alloy sheet using a time and position dependent localized necking criterion. Mater Sci Eng 159:012009

    Google Scholar 

  40. Vysochinskiy D, Coudert T, Hopperstad OS, Lademo OG, Reyes A (2016) Experimental detection of forming limit strains on samples with multiple local necks. J Mater Process Technol 227:216–226

    Google Scholar 

  41. Banabic D, Lazarescu L, Paraianu L, Ciobanu I, Nicodim I, Comsa DS (2013) Development of a new procedure for the experimental determination of the forming limit curves. CIRP Ann Manuf Technol 62:255–258

    Google Scholar 

  42. Leotoing L, Guines D, Zidane I, Ragneau E (2013) Cruciform shape benefits for experimental and numerical evaluation of sheet metal formability. J Mater Process Technol 213:856–863

    Google Scholar 

  43. Chu X, Leotoing L, Guines D, Ragneau E (2014) Temperature and strain rate influence on AA5086 forming limit curves: experimental results and discussion on the validity of the M-K model. Int J Mech Sci 78:27–34

    Google Scholar 

  44. Gao H, El Fakir O, Wang L, Politis DJ, Li Z (2017) Forming limit prediction for hot stamping processes featuring non-isothermal and complex loading conditions. Int J Mech Sci 131–132:792–810

    Google Scholar 

  45. Wang N, Ilinich A, Chen M, Luckey G, D’Amours G (2019) A comparison study on forming limit prediction methods for hot stamping of 7075 aluminum sheet. Int J Mech Sci 151:444–460

    Google Scholar 

  46. Nagra JS, Brahme A, Mishra R, Lebensohn RA, Inal K (2018) An efficient full-field crystal plasticity-based M–K framework to study the effect of 3D microstructural features on the formability of polycrystalline materials. Model Simul Mater Sci Eng 26:075002

    Google Scholar 

  47. Schwindt C, Schlosser F, Bertinetti MA, Stout M, Signorelli JW (2015) Experimental and viscoplastic self-consistent evaluation of forming limit diagrams for anisotropic sheet metals: an efficient and robust implementation of the M–K model. Int J Plast 73:62–99

    Google Scholar 

  48. Signorelli J W, Bertinetti MA (2012) Self-consistent homogenization methods for predicting forming limits of sheet metal in: metal forming—process, Tools, Design, InTech, London, pp. 175–210

  49. Kami A, Mollaei Dariani B, Sadough Vanini A, Comsa DS, Banabic D (2014) Prediction of the forming limit curves using GTN damage model. Rom J Tech Sciences – App Mech 59:253–264

    Google Scholar 

  50. Assempour A, Nejadkhaki HK, Hashemi R (2010) Forming limit diagrams with the existence of through-thickness normal stress. Comput Mater Sci 48:504–548

    Google Scholar 

  51. Erfanian F, Hashemi R (2018) A comparative study of the extended forming limit diagrams considering strain path, through-thickness normal and shear stress. Int J Mech Sci 148:316–326

    Google Scholar 

  52. Hashemi R, Abrinia K (2014) Analysis of the extended stress-based forming limit curve considering the effects of strain path and through-thickness normal stress. Mat Des 54:670–677

    Google Scholar 

  53. Ma B, Diao K, Wu X, Li X, Wan M, Cai Z (2016) The effect of the through-thickness normal stress on sheet formability. J Manuf Process 21:134–140

    Google Scholar 

  54. Zhang F, Chen J, Chen J, Zhu X (2014) Forming limit model evaluation for anisotropic sheet metals under through-thickness normal stress. Int J Mech Sci 89:40–46

    Google Scholar 

  55. Bagherzadeh S, Mirnia MJ, Mollaei DB (2015) Numerical and experimental investigations of hydro-mechanical deep drawing process of laminated aluminum/steel sheets. J Manuf Process 18:131–140

    Google Scholar 

  56. Gorji M, Berisha B, Manopulo N, Hora P (2016) Effect of through thickness strain distribution on shear fracture hazard and its mitigation by using multilayer aluminum sheets. J Mater Process Technol 232:19–33

    Google Scholar 

  57. Jalali Aghchai A, Shakeri M, Mollaei Dariani B (2013) Influences of material properties of components on formability of two-layer metallic sheets. Int J Adv Manuf Technol 66:809–823

    Google Scholar 

  58. Kami A, Mollaei Dariani B, Comsa DS, Banabic D, Sadough Vanini A, Liewald M (2017) An experimental study on the formability of a vibration damping sandwich sheet (Bondal). Proc. Rom Acad 18A:281–290

    Google Scholar 

  59. Kim D, Kim H, Kim JH, Lee MG, Kim KJ, Barlat F, Lee Y, Chung K (2015) Modeling of forming limit for multilayer sheets based on strain-rate potentials. Int J Plast 75:63–99

    Google Scholar 

  60. Liu J, Liu W, Xue W (2013) Forming limit diagram prediction of AA5052/polyethylene/AA5052 sandwich sheets. Mater Des 46:112–120

    Google Scholar 

  61. Parsa MH, Ettehad M, Matin PH, Al Ahkami SN (2010) Experimental and numerical determination of limiting drawing ratio of Al3105-polypropylene-Al3105 sandwich sheets. J Eng Mater Technol 132:31004

    Google Scholar 

  62. Hora P, Tong L, Berisha B (2013) Modified maximum force criterion, a model for the theoretical prediction of forming limit curves. Int J Mat Form 6:267–279

    Google Scholar 

  63. Lian J, Shen F, Jia X, Ahn DC, Chae DC, Münstermann S, Bleck W (2018) An evolving non-associated Hill48 plasticity model accounting for anisotropic hardening and r-value evolution and its application to forming limit prediction. Int J Solids Struct 151: 20–44

  64. Hu Q, Li X, Zhu X, Chen J (2018) Investigations on the effects of hardening law and yield criterion on the forming limit prediction with perturbation approach. Acta Mech Solids Sin (in press)

  65. Yoshida K, Kuroda M (2012) Comparison of bifurcation and imperfection analyses of localized necking in rate-independent polycrystalline sheets. Int J Solids Struct 49:2073–2084

    Google Scholar 

  66. Butcher C, Anderson D, Worswick M (2013) Predicting failure during sheared edge stretching using a damage-based model for the shear-affected zone. SAE Int J Mater Manf 6:304–312

    Google Scholar 

  67. Ilinich A, Smith L, Golovashchenko S (2011) Analysis of methods for determining sheared edge formability, SAE technical paper 2011-01-1062

  68. Karnop R, Sachs G (1928) Festigkeitseigenschaften von Kristallen einer veredelbaren Aluminiumlegierung. Z Phys 49:480–497

    MATH  Google Scholar 

  69. Polanyi M, Schmid E (1923) Ist die Gleitreibung vom Druck normal zu den Gleitflächen abhängig. Z Phys 16:336–339

    Google Scholar 

  70. Bridgman P (1952) W:studies in large plastic flow and fracture. McGraw-Hill, New York

    Google Scholar 

  71. Lode W (1926) Versuche über den Einflus der mittleren Hauptspannung auf das Fliessen der Metalle Eisen, Kupfer und Nickel. Z Phys 36:913–939

    Google Scholar 

  72. Drucker DC (1949) Relation of experiments to mathematical theories of plasticity. J Appl Mech 16:349–357

    MathSciNet  MATH  Google Scholar 

  73. Hershey AV (1954) The plasticity of an isotropic aggregate of anisotropic face centred cubic crystals. J Appl Mech 21:241–249

    MATH  Google Scholar 

  74. Hosford WF (1972) A generalized isotropic yield criterion. J Appl Mech 39:607–609

    Google Scholar 

  75. Cazacu O, Chandola N, Revil-Baudard B (2018) Analytical expressions for the yield stress and Lankford coefficients of polycrystalline sheets based on a new single crystal model. Int J Mater Form 11:571–581

    Google Scholar 

  76. Barlat F, Lege DJ, Brem JC (1991) A six-component yield function for anisotropic materials. Int J Plast 7:693–712

    Google Scholar 

  77. Watson M, Dick R, Huang Y H, Lockley A, Cardoso R, Santos A (2016) Benchmark 1 – failure prediction after cup drawing, reverse redrawing and expansion: part D: responses, NUMISHEET 2016, 10th Int Conf workshop numerical simulation of 3D sheet metal forming processes, J of physics: Conf series Cardoso R, Adetosro OB (Eds.), Vol. 734. https://doi.org/10.1088/1742-6596/734/2/022001

  78. Cazacu O (2019) New mathematical results and explicit expressions in terms of the stress components of Barlat et al. (1991) orthotropic yield criterion. Int J Solids Struct 176–177:86–95

    Google Scholar 

  79. Cazacu O, Revil-Baudard B, Chandola N (2019) Plasticity-damage couplings:from single crystal to polycrystalline materials. Springer, Berlin Heidelberg

    MATH  Google Scholar 

  80. Dillamore I, Roberts W (1964) Rolling textures in fcc and bcc metals. Acta Metall 12:281–293

    Google Scholar 

  81. Hirsch J (2005) Texture and anisotropy in industrial applications of aluminium alloys. Arch Metall Mater 50:21–34

    Google Scholar 

  82. Bishop J, Hill R (1951) A theoretical derivation of the plastic properties of a polycrystalline face-centred metal. Philos Mag J Sci 42:1298–1307

    MathSciNet  MATH  Google Scholar 

  83. Taylor GI (1938) Analysis of plastic strain in a cubic crystal. In: Stephen Timoshenko 60 th anniversary volume pp 218–224

  84. Barlat F, Cazacu O, Życzowski M, Banabic D, Yoon JW (2004) Yield surface plasticity and anisotropy. In: Raabe D, Roters F, Barlat F, Chen LQ (eds) Continuum scale simulation of engineering materials–fundamentals microstructures process applications. Wiley VCH, Manheim, pp 145–177

    Google Scholar 

  85. Cazacu O, Revil-Baudard B, Chandola N (2018) A yield criterion for cubic single crystals. Int J Solids Struct 151:9–19

    MATH  Google Scholar 

  86. Chandola N, Cazacu O, Revil-Baudard B (2017) New polycrystalline modeling as applied to textured steel sheets. Mech. Res Commun 84:98–101

    Google Scholar 

  87. Chandola N, Cazacu O, Revil-Baudard B (2017) Predictions of plastic anisotropy of textured polycrystalline sheets using a new single crystal model. C R Mecanique 346:756–769

    Google Scholar 

  88. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc Roy Soc A193:281–297

    MathSciNet  MATH  Google Scholar 

  89. Hill R (1990) Constitutive modelling of orthotropic plasticity in sheet metals. J Mech Phys Solids 38:405–417

    MathSciNet  MATH  Google Scholar 

  90. Barlat F, Lian J (1989) Plastic behavior and stretchability of sheet metals. Part I: Yield function for orthotropic sheets under plane stress conditions. Int J Plast 5:51–66

    Google Scholar 

  91. Karafillis AP, Boyce MC (1993) A general anisotropic yield criterion using bounds and a transformation weighting tensor. J Mech Phys Solids 41:1859–1886

    MATH  Google Scholar 

  92. Banabic D et al (2010) Sheet metal forming processes. Springer, Berlin Heidelberg

    Google Scholar 

  93. Cazacu O (2019) New expressions and calibration strategies for Karafillis and Boyce (1993) yield criterion. Int J Solids Struct 185–186:410–422

    Google Scholar 

  94. Cazacu O, Barlat F (2001) Generalization of Drucker's yield criterion to orthotropy. Math Mech Solids 6:613–630

    MATH  Google Scholar 

  95. Cazacu O, Barlat F (2003) Application of representation theory to describe yielding of anisotropic aluminum alloys. Int J Eng Sci 41:1367–1385

    Google Scholar 

  96. Barros PD, Neto DM, Alves JL, Oliveira MC, Menezes LF (2015) DD3IMP, 3D fully implicit finite element solver: implementation of CB2001 yield criterion. Rom J Techn Sci App Mech 60(1–2):105–136

    MathSciNet  Google Scholar 

  97. Neto DM, Oliveira MC, Dick RE, Barros PD, Alves JL, Menezes LF, Neto DM, Oliveira MC, Dick RE, Barros PD, Alves JL, Menezes LF (2017) Numerical and experimental analysis of wrinkling during the cup drawing of an AA5042 aluminium alloy. Int J Mater Form 10:125–138

    Google Scholar 

  98. Cazacu O (2018) New yield criteria for isotropic and textured metallic materials. Int J Solids Struct 139:200–210

    Google Scholar 

  99. Revil-Baudard B (2020) Forming of materials with cubic crystal structure. Procedia Manuf 47:1300–1307

    Google Scholar 

  100. Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Pourboghrat F, Choi S-H, Chu E (2003) Plane stress yield function for aluminum alloy sheet-part I: theory. Int J Plast 19:1297–1319

    MATH  Google Scholar 

  101. Barlat F, Richmond O (1985) Prediction of tricomponent plane stress yield surfaces and associated flow and failure behavior of strongly textured FCC sheets. Mater Sci Eng 95:15–29

    Google Scholar 

  102. Banabic D, Comsa DS, Balan T (2000) A new yield criterion for orthotropic sheet metals under plane –stress conditions. In: Banabic, D. (ed.): Proc. of the 7th Conf. “TPR2000“. Cluj Napoca, pp 217-224

  103. Banabic D, Kuwabara T, Balan T, Comsa DS, Julean D (2003) Non-quadratic yield criterion for orthotropic sheet metals under plane-stress conditions. Int J Mech Sci 45:797–811

    MATH  Google Scholar 

  104. Banabic D, Aretz H, Comsa DS, Paraianu L (2005) An improved analytical description of orthotropy in metallic sheets. Int J Plast 21:493–512

    MATH  Google Scholar 

  105. Pilthammar J, Banabic D, Sigvant M (2020) BBC05 with non-integer exponent and ambiguities in Nakajima yield surface calibration. Int J Mater Form. https://doi.org/10.1007/s12289-020-01545-0

  106. Barlat F, Yoon JW, Cazacu O (2007) On linear transformations of stress tensors for the description of plastic anisotropy. Int J Plast 23:876–896

    MATH  Google Scholar 

  107. Comsa DS, Banabic D (2008) Plane-stress yield criterion for highly-anisotropic sheet metals. Proc Numisheet 2008 Conf, Interlaken, Switzerland, pp 43–48

  108. Vrh M, Halilovič M, Starman B, Štok B, Comsa DS, Banabic D (2014) Capability of the BBC2008 yield criterion in predicting the earing profile in cup deep drawing simulations. Eur J Mech A/Solids 45:59–74

    MathSciNet  MATH  Google Scholar 

  109. Plunkett B, Lebensohn RA, Cazacu O, Barlat F (2006) Anisotropic yield function of hexagonal materials taking into account texture development and anisotropic hardening. Acta Mater 54:4159–4169

    Google Scholar 

  110. Lebensohn RA, Tomé CN (1993) A self-consistent approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall Mater 41:2611–2624

    Google Scholar 

  111. Cazacu O, Plunkett B, Barlat F (2006) Orthotropic yield criterion for hexagonal close packed metals. Int J Plast 22:1171–1194

    MATH  Google Scholar 

  112. Gawad J, Banabic D, van Bael A, Comsa DS, Gologanu M, Eyckens P, van Houtte P, Roose D (2015) An evolving plane stress yield criterion based on crystal plasticity virtual experiments. Int J Plast 75:141–169

    Google Scholar 

  113. van Houtte P, Li S, Seefeldt M, Delannay L (2005) Deformation texture prediction: from the Taylor model to the advanced Lamel model. Int J Plast 21:589–624

    MATH  Google Scholar 

  114. Barlat F, Gracio JJ, Lee M-G, Rauch EF, Vincze G (2011) An alternative to kinematic hardening in classical plasticity. Int J Plast 27:1309–1327

    MATH  Google Scholar 

  115. van den Boogaard T, Havinga J, Belin A (2016) Parameter reduction for Yld2004-18p yield criterion. Int J Mater Form 9: 175–178

  116. Yoon JW, Barlat F, Dick RE, Karabin ME (2006) Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. Int J Plast 22:174–193

    MATH  Google Scholar 

  117. Yoon JW, Barlat F (2006) Modeling and simulation of the forming of aluminium sheet alloys. In: Semiatin SL (ed) ASM Handbook, Metalworking: sheet forming, vol 14B. ASM International, Materials Park, OH, pp 792–826

    Google Scholar 

  118. Skrzypek JJ, Ganczarski AW (2015) Mechanics of anisotropic materials. Springer, London

    MATH  Google Scholar 

  119. Banabic D (2000) Anisotropy of sheet metals. In: Banabic D (ed) Formability of metallic materials. Springer, Berlin Heidelberg, pp 119–172

    Google Scholar 

  120. Banabic D, Barlat F, Cazacu O, Kuwabara T (2007) Anisotropy and formability. In: Chinesta F, Cueto E (eds) Advances in material forming-ESAFORM 10 years on. Springer, Berlin, Heidelberg, pp 143–173

    Google Scholar 

  121. Banabic D, Barlat F, Cazacu O, Kuwabara T (2010) Advances in anisotropy and formability. Int J Mat Form 3:165–189

    Google Scholar 

  122. Barlat F (2007) Constitutive modeling for metals. In: Banabic D (ed) Advanced methods in material forming. Springer, Berlin, Heidelberg, pp 5–25

    Google Scholar 

  123. Barlat F, Lee M-G (2015) Constitutive description of isotropic and anisotropic plasticity for metals. In: Altenbach H, Sadowski T (eds) Failure and damage analysis of advanced materials. Course and lectures at the International Center for Mechanical Sciences (CISM), Udine, Italy. Springer, Berlin, pp 67–118

    Google Scholar 

  124. Barlat F, Kuwabara T, Korkolis Y (2017) Anisotropic plasticity and application to plane stress. In: Encyclopedia of Continuum Mechanics, Springer, Berlin

  125. Bruschi S, Altan T, Banabic D, Bariani PF, Brosius A, Cao J, Ghiotti A, Khraisheh M, Merklein M, Tekkaya AE (2014) Testing and modelling of material behaviour and formability in sheet metal forming. CIRP Ann Manuf Technol 63:727–749

    Google Scholar 

  126. Yu MH (2002) Advances in strength theories for materials under complex stress state in the 20th century. Appl Mech Rev 55:198–218

    Google Scholar 

  127. Nie JF (2014) Physical metallurgy of light alloys. In: Laughlin DE, Hono K (eds) Physical metallurgy. Elsevier, Amsterdam, pp 2009–2156

    Google Scholar 

  128. Bohlen J, Nürnberg MR, Senn JW, Letzig D, Agnew SR (2007) The texture and anisotropy of magnesium–zinc–rare earth alloy sheets. Acta Mater 55:2101–2112

    Google Scholar 

  129. Hosford WF (1985) Comments on anisotropic yield criteria. Int J Mech Sci 27:423–427

    Google Scholar 

  130. Hosford WF, Allen TJ (1973) Twining and directional slip as a cause for strength differential effect. Met Trans 4:1424–1425

    Google Scholar 

  131. Cazacu O, Barlat F (2004) A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals. Int J Plast 20:2027–2045

    MATH  Google Scholar 

  132. Vitek V, Mrovec M, Bassani JL (2004) Influence of non-glide stresses on plastic flow: from atomistic to continuum modeling. Mater Sci Eng A 365:31–37

    Google Scholar 

  133. Cazacu O, Barlat F (2008) Modeling plastic anisotropy and strength differential effects in metallic materials. In: Cazacu O (eds.) Multiscale modeling of heterogeneous materials: from microstructure to macroscale properties, ISTE ltd and John Wiley & Sons Inc, pp 71-91

  134. Graff S, Brocks W, Steglich D (2007) Yielding of magnesium: from single crystals to polycrystalline aggregates. Int J Plast 23:1957–1978

    MATH  Google Scholar 

  135. Nixon ME, Cazacu O, Lebensohn RA (2010) Anisotropic response of high-purity α-titanium: experimental characterization and constitutive modeling. Int J Plast 26:510–532

    MATH  Google Scholar 

  136. Cazacu O, Revil-Baudard B (2020) Plasticity of metallic materials: modelling and applications to metal forming. Elsevier, Amsterdam

    MATH  Google Scholar 

  137. Revil-Baudard B, Chandola N, Cazacu O, Barlat F (2014) Correlation between Swift effects and tension–compression asymmetry in various polycrystalline materials. J Mech Phys Solids 70:104–115

    Google Scholar 

  138. Guo XQ, Wu W, Wu PD, Qiao H, An K, Liaw PK (2013) On the Swift effect and twinning in a rolled magnesium alloy under free-end torsion. Scr Mater 69:319–322

    Google Scholar 

  139. Khan Aszmi R, Farrokh B (2007) Multiaxial and non-proportional loading responses, anisotropy and modeling of Ti–6Al–4V titanium alloy over wide ranges of strain rates and temperatures. Int J Plast 23:931–950

    MATH  Google Scholar 

  140. Gilles G, Tuninetti V, Bettaïeb MB, Cazacu O, Habraken A, Duchene L (2011b) Experimental characterization and constitutive modeling of TA6V mechanical behavior in plane strain state at room temperature. In: AIP Conf Proc. American Inst Physics, pp. 78–85

  141. Bouvier S, Benmhenni N, Tirry W, Gregory F, Nixon M, Cazacu O, Rabet L (2012) Hardening in relation with microstructure evolution of high purity α-titanium deformed under monotonic and cyclic simple shear loadings at room temperature. Mater Sci Eng A 535:12–21

    Google Scholar 

  142. Revil-Baudard B, Cazacu O, Flater P, Chandola N, Alves JL (2016) Unusual plastic deformation and damage features in titanium: experimental tests and constitutive modeling. J Mech Phys Solids 88:100–122

    MathSciNet  Google Scholar 

  143. Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive theories. Int J Plast 24:1642–1693

    MATH  Google Scholar 

  144. Teodosiu C, Hu Z (1998) Microstructure in the continuum modeling of plastic anisotropy. In: Cartensen JV, Leffers T, Lorentzen T, Pedersen OB, Sørensen BF, Winther G (eds) Proc. Risø international symposium on material science: modelling of structure and mechanics of materials from microscale to products. Risø National Laboratory, Roskilde, pp 149–168

    Google Scholar 

  145. Mánik T, Holmedal B, Hopperstad OS (2015) Strain-path change induced transients in flow stress, work hardening and r-values in aluminum. Int J Plast 69:1–20

    Google Scholar 

  146. Peeters B, Seefeldt M, Teodosiu C, Kalidindi SR, Van Houtte P, Aernoudt (2001) Work-hardening/softening behaviour of b.c.c. polycrystals during changing strain paths: I. An integrated model based on substructure and texture evolution, and its prediction of the stress–strain behaviour of an IF steel during two-stage strain paths. Acta Mater 49, 1607–1619

  147. Wang J, Levkovitch V, Svendsen B (2006) Modeling and simulation of directional hardening in metals during non-proportional loading. J Mater Process Technol 177:430–432

    Google Scholar 

  148. Feigenbaum HP, Dafalias YF (2007) Directional distortional hardening in metal plasticity within thermodynamics. Int J Solids Struct 44:7526–7542

    MATH  Google Scholar 

  149. Levkovitch V, Svendsen B (2007) Accurate hardening modeling as basis for the realistic simulation of sheet forming processes with complex strain-path changes. AIP conference proceedings 907, Cueto, E. and Chinesta, F., (Eds.), pp. 358–363

  150. Qin J, Holmedal B, Zhang K, Hopperstad OS (2017) Modeling strain-path changes in aluminum and steel. Int J Solids Struct 117:123–136

    Google Scholar 

  151. Qin J, Holmedal B, Hopperstad OS (2018) A combined isotropic, kinematic and distortional hardening model for aluminum and steels under complex strain-path changes. Int J Plast 101:156–169

    Google Scholar 

  152. Kurtyka T, Życzkowski M (1996) Evolution equations for distortional plastic hardening. Int J Plast 23:191–213

    MATH  Google Scholar 

  153. Krieg RD (1975) A practical two surface plasticity theory. Trans ASME J App Mech 42:641–646

    Google Scholar 

  154. Dafalias YF, Popov EP (1975) A model of nonlinearly hardening materials for complex loading. Acta Mecanica 21:173–192

    MATH  Google Scholar 

  155. He J, Xia ZC, Zeng D, Li S (2013) Forming limits of a sheet metal after continuous bending-under-tension loading. J Eng Mater Technol 135:031009

    Google Scholar 

  156. Barlat F, Ha J, Grácio JJ, Lee M-G, Rauch EF, Vincze G (2013) Extension of homogeneous anisotropic hardening model to cross-loading with latent effects. Int J Plast 46:130–142

    Google Scholar 

  157. Barlat F, Vincze G, Grácio JJ, Lee M-G, Rauch E, Tomé C (2014) Enhancements of homogenous anisotropic hardening model and application to mild and dual phase steels. Int J Plast 58:201–218

    Google Scholar 

  158. Barlat F, Yoon SY, Lee SY, Kim JH (2020) Distortional plasticity framework with application to advanced high strength steel. Int J Solids Struct. https://doi.org/10.1016/j.ijsolstr.2020.05.014

  159. Spitzig WA, Sober RJ, Richmond O (1975) Pressure dependence of yielding and associated volume expansion in tempered martensite. Acta Metall 23:885–893

    Google Scholar 

  160. Choi J, Lee J, Bae GH, Barlat F, Lee MG (2016) Evaluation of springback for DP980 S-rail part by anisotropic hardening models. JOM 68:1850–1857

    Google Scholar 

  161. Choi J, Lee J, Bong HJ, Lee MG, Barlat F (2018) Advanced constitutive modeling of AHSS sheets for springback prediction after double stage U-draw bending. Int J Solids Struct 151:152–164

    Google Scholar 

  162. Kuwabara T (2014) Biaxial stress testing methods for sheet metals. In: comprehensive materials processing; van Tyne CJ (ed) Elsevier, Vol. 1, pp. 95–111

  163. Mulder J, Vegter H, Aretz H, Keller S, van den Boogaard AH (2015) Accurate determination of flow curves using the bulge test with optical measuring systems. J Mater Process Technol 226:169–187

    Google Scholar 

  164. Yoshida K (2013) Evaluation of stress and strain measurement accuracy in hydraulic bulge test with the aid of finite-element analysis. ISIJ Int 53:86–95

    Google Scholar 

  165. Min J, Stoughton TB, Carsley JE, Carlson BE, Lin J, Gao X (2017) Accurate characterization of biaxial stress-strain response of sheet metal from bulge testing. Int J Plast 94:192–213

    Google Scholar 

  166. Yanaga D, Kuwabara T, Uema N, Asano M (2012) Material modeling of 6000 series aluminum alloy sheets with different density cube textures and effect on the accuracy of finite element simulation. Int J Solids Struct 49:3488–3495

    Google Scholar 

  167. Chen K, Scales M, Kyriakides S, Corona E (2016) Effects of anisotropy on material hardening and burst in the bulge test. Int J Solids Struct 82:70–84

    Google Scholar 

  168. Williams BW, Boyle KP (2016) Characterization of anisotropic yield surfaces for titanium sheet using hydrostatic bulging with elliptical dies. Int J Mech Sci 114:315–329

    Google Scholar 

  169. Hanabusa Y, Takizawa H, Kuwabara T (2010) Evaluation of accuracy of stress measurements determined in biaxial stress tests with cruciform specimen using numerical method. Steel Res Int 81:1376–1379

    Google Scholar 

  170. Hanabusa Y, Takizawa H, Kuwabara T (2013) Numerical verification of a biaxial tensile test method using a cruciform specimen. J Mater Process Technol 213:961–970

    Google Scholar 

  171. Deng N, Kuwabara T, Korkolis YP (2015) Cruciform specimen design and verification for constitutive identification of anisotropic sheets. Exp Mech 55:1005–1022

    Google Scholar 

  172. Tiernan P, Hannon A (2014) Design optimisation of biaxial tensile test specimen using finite element analysis. Int J Mat Form 7:117–123

    Google Scholar 

  173. Bertin M, Hild F, Roux S (2016) Optimization of a biaxial tensile specimen geometry for the identification of constitutive parameters based upon full field measurements. Strain 52:307–323

    Google Scholar 

  174. Härtel M, Pfeiffer S, Schmaltz S, Söhngen B, Kulawinski D, Willner K, Henkel S, Biermann H, Wagner MFX (2018) On the identification of an effective cross section for a cruciform specimen. Strain 54:1–12

    Google Scholar 

  175. Leotoing L, Guines D (2015) Investigations of the effect of strain path changes on forming limit curves using an in-plane biaxial tensile test. Int J Mech Sci 99:21–28

    Google Scholar 

  176. Song X, Leotoing L, Guines D, Ragneau E (2016) Investigation of the forming limit strains at fracture of AA5086 sheets using an in-plane biaxial tensile test. Eng Fract Mech 163:130–140

    Google Scholar 

  177. Liu W, Guines D, Leotoing L, Ragneau E (2016) Identification of strain rate-dependent mechanical behaviour of DP600 under in-plane biaxial loadings. Mater Sci Eng A 676:366–376

    Google Scholar 

  178. Song X, Leotoing L, Guines D, Ragneau E (2017) Characterization of forming limits at fracture with an optimized cruciform specimen: application to DP600 steel sheets. Int J Mech Sci 126:35–43

    Google Scholar 

  179. Xiao R, Li XX, Lang LH, Song Q, Liu KN (2017) Forming limit in thermal cruciform biaxial tensile testing of titanium alloy. J Mater Process Technol 240:354–361

    Google Scholar 

  180. Jocham D, Gaber C, Böttcher O, Wiedemann P, Volk W (2017) Experimental prediction of sheet metal formability of AW-5754 for non-linear strain paths by using a cruciform specimen and a blank holder with adjustable draw beads on a sheet metal testing machine. Int J Mat Form 10:597–605

    Google Scholar 

  181. Srinivasan N, Velmurugan R, Kumar SSK, Pant B (2016) Deformation behavior of commercially pure (CP) titanium under equi-biaxial tension. Mater Sci Eng A674:540–551

    Google Scholar 

  182. Verma RK, Kuwabara T, Chung K, Haldar A (2011) Experimental evaluation and constitutive modeling of non-proportional deformation for asymmetric steels. Int J Plast 27:82–101

    Google Scholar 

  183. Kuwabara T, Sugawara F (2013) Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range. Int J Plast 45:103–118

    Google Scholar 

  184. Kuwabara T, Ichikawa K (2015) Hole expansion simulation considering the differential hardening of a sheet metal. Rom J Tech Sci Appl Mech 60:63–81

    Google Scholar 

  185. Merklein M, Suttner S, Brosius A (2014) Characterization of kinematic hardening and yield surface evolution from uniaxial to biaxial tension with continuous strain path change. CIRP Ann Manuf Technol 63:297–300

    Google Scholar 

  186. Nomura S, Kuwabara T (2020) Material modeling of hot-rolled steel sheet considering differential hardening and hole expansion simulation. ISIJ Int 106 (in Japanese)

  187. Hakoyama T, Kuwabara T (2015) Effect of biaxial work hardening modeling for sheet metals on the accuracy of forming limit analyses using the Marciniak-Kuczynski approach. In: Altenbach H, Matsuda T, Okumura D (eds) From Creep Damage Mechanics to Homogenization Methods. Springer, Cham, pp 67–95

    Google Scholar 

  188. Hashimoto K, Kuwabara T, Iizuka E, Yoon JW (2010) Effect of anisotropic yield functions on the accuracy of hole expansion simulations for 590 MPa grade steel sheet. J Iron Steel Inst Jpn 96:557–563 (in Japanese)

    Google Scholar 

  189. Deng N, Kuwabara T, Korkolis YP (2018) On the non-linear unloading behavior of a biaxially loaded dual-phase steel sheet. Int J Mech Sci 138–139:383–397

    Google Scholar 

  190. Kuwabara T, Hashimoto K, Iizuka E, Yoon JW (2011) Effect of anisotropic yield functions on the accuracy of hole expansion simulations. J Mater Process Technol 211:475–481

    Google Scholar 

  191. Kuwabara T, Nakajima T (2011) Material modeling of 980MPa dual phase steel sheet based on biaxial tensile test and in-plane stress reversal test. J Solid Mech Mater Eng 5:709–720

    Google Scholar 

  192. Zhang S, Léotoing L, Guines D, Thuillier S (2015) Potential of the cross biaxial test for anisotropy characterization based on heterogeneous strain field. Exp Mech 55:817–835

    Google Scholar 

  193. Min J, Carsley JE, Lin J, Wen Y, Kuhlenkötter B (2016) A non-quadratic constitutive model under non-associated flow rule of sheet metals with anisotropic hardening: modeling and experimental validation. Int J Mech Sci 119:343–359

    Google Scholar 

  194. Cheng C, Wan M, Meng B, Zhao R, Han WP (2019) Size effect on the yield behavior of metal foil under multiaxial stress states: experimental investigation and modelling. Int J Mech Sci 151:760–771

    Google Scholar 

  195. Kawaguchi J, Kuwabara T, Sakurai T (2015) Formulation of the differential hardening of 5000 series aluminum alloy sheet for enhancing the predictive accuracy of sheet metal forming simulations. J Jpn Inst Light Metals 65:554–560 (in Japanese)

    Google Scholar 

  196. Liu W, Guines D, Leotoing L, Ragneau E (2015) Identification of sheet metal hardening for large strains with an in-plane biaxial tensile test and a dedicated cross specimen. Int J Mech Sci 101-102:387–398

    Google Scholar 

  197. Zhang S, Leotoing L, Guines D, Thuillier S, Zang SL (2014) Calibration of anisotropic yield criterion with conventional tests or biaxial test. Int J Mech Sci 85:142–151

    Google Scholar 

  198. Andar MO, Kuwabara T, Steglich D (2012) Material modeling of AZ31 Mg sheet considering variation of r-values and asymmetry of the yield locus. Mater Sci Eng A 549:82–92

    Google Scholar 

  199. Ishiki M, Kuwabara T, Hayashida Y (2011) Measurement and analysis of differential work hardening behavior of pure titanium sheet using spline function. Int J Mat Form 4:193–204

    Google Scholar 

  200. Badr OM, Barlat F, Rolfe B, Lee MG, Hodgson P, Weiss M (2016) Constitutive modelling of high strength titanium alloy Ti-6Al-4V for sheet forming applications at room temperature. Int J Solids Struct 80:334–347

    Google Scholar 

  201. Xiao R, Li XX, Lang LH, Chen YK, Yang YF (2016) Biaxial tensile testing of cruciform slim superalloy at elevated temperatures. Mat Des 94:286–294

    Google Scholar 

  202. Lee JY, Lee KJ, Lee MG, Kuwabara T, Barlat F (2019) Numerical modeling for accurate prediction of strain localization in hole expansion of a steel sheet. Int J Solids Struct 156–157:107–118

    Google Scholar 

  203. Andar MO, Kuwabara T, Yonemura S, Uenishi A (2010) Elastic-plastic and inelastic characteristics of high strength steel sheets under biaxial loading and unloading. ISIJ 50:613–619

    Google Scholar 

  204. Sumikawa S, Ishiwatari A, Hiramoto J, Yoshida F, Clausmeyer T, Tekkaya E (2017) Stress state dependency of unloading behavior in high strength steels. Procedia Eng 207:179–184

    Google Scholar 

  205. Brosius A, Yin Q, Güner A, Tekkaya AE (2011) A new shear test for sheet metal characterization. Steel Res Int 82:323–328

    Google Scholar 

  206. Kulawinski D, Ackermann S, Seupel A, Lippmann T, Henkel S, Kuna M, Weidner A, Biermann H (2015) Deformation and strain hardening behavior of powder metallurgical TRIP steel under quasi-static biaxial-planar loading. Mat Sci Eng A 642:317–329

    Google Scholar 

  207. Ripley PW, Korkolis YP (2016) Multiaxial deformation apparatus for testing of microtubes under combined axial-force and internal-pressure. Exp Mech 56:273–286

    Google Scholar 

  208. Yoon JW, Barlat F, Dick RE, Chung K, Kang TJ (2004) Plane stress yield function for aluminum alloy sheets–part II: FE formulation and its implementation. Int J Plast 20:495–522

    MATH  Google Scholar 

  209. Dick CP, Korkolis YP (2015) Anisotropy of thin-walled tubes by a new method of combined tension and shear loading. Int J Plast 71:87–112

    Google Scholar 

  210. Yoshida K, Tsuchimoto T (2018) Plastic flow of thin-walled tubes under nonlinear tension-torsion loading paths and an improved pseudo-corner model. Int J Plast 104:214–229

    Google Scholar 

  211. Khalfallah A, Oliveira MC, Alves JL, Zrib T, Belhadjsalah H, Menezes LF (2015) Mechanical characterization and constitutive parameter identification of anisotropic tubular materials for hydroforming applications. Int J Mech Sci 104:91–103

    Google Scholar 

  212. Yin Q, Zillmann B, Suttner S, Gerstein G, Biasutti M, Tekkaya A, Wagner M, Merklein M, Schaper M, Halle T, Brosius A (2014) An experimental and numerical investigation of different shear test configurations for sheet metal characterization. Int J Solids Struct 51:1066–1074

    Google Scholar 

  213. ASTM 2005 Test method for shear testing of thin aluminum alloy products. ASTM Int.

  214. Fu J, Barlat F, Kim JH, Pierron F (2017) Application of the virtual fields method to the identification of the homogeneous anisotropic hardening parameters for advanced high strength steels. Int J Plast 93:229–250

    Google Scholar 

  215. Peirs J, Verleysen P, Degrieck J (2012) Novel technique for static and dynamic shear testing of Ti6Al4V sheet. Exp Mech 52:729–741

    Google Scholar 

  216. Rahmaan T, Abedini A, Butcher C, Pathak N, Worswick MJ (2017) Investigation into the shear stress, localization and fracture behavior of DP600 and AA5182-O sheet metal alloys under elevated strain rates. Int J Impact Eng 108:303–321

    Google Scholar 

  217. Abedini A, Butcher C, Worswick MJ (2017) Fracture characterization of rolled sheet alloys in shear loading: studies of specimen geometry, anisotropy, and rate sensitivity. Exp Mech 57:75–88

    Google Scholar 

  218. Dunand M, Mohr D (2011) Optimized butterfly specimen for the fracture testing of sheet materials under combined normal and shear loading. Eng Fract Mech 78:2919–2934

    Google Scholar 

  219. Abedini A, Butcher C, Nemcko M, Kurukuri S, Worswick MJ (2017) Constitutive characterization of a rare-earth magnesium alloy sheet (ZEK100-O) in shear loading: studies of anisotropy and rate sensitivity. Int J Mech Sci 128-129:54–69

    Google Scholar 

  220. Rahmaan T, Noder J, Abedini A, Zhou P, Butcher C, Worswick MJ (2020) Anisotropic plasticity characterization of 6000- and 7000-series aluminum sheet alloys at various strain rates. Int J Impact Eng 135:103390

    Google Scholar 

  221. Butcher C, Abedini A (2019) On anisotropic plasticity models using linear transformations on the deviatoric stress: physical constraints on plastic flow in generalized plane strain. Int J Mech Sci 161–162:105044

    Google Scholar 

  222. Abedini A, Butcher C, Rahmaan T, Worswick MJ (2018) Evaluation and calibration of anisotropic yield criteria in shear loading: constraints to eliminate numerical artefacts. Int J Solids Struct 151:118–134

    Google Scholar 

  223. Flores P, Tuninetti V, Gilles G, Gonry P, Duchene L, Habraken AM (2010) Accurate stress computation in plane strain tensile tests for sheet metal using experimental data. J Mater Process Technol 210:1772–1779

    Google Scholar 

  224. Aretz H, Hopperstad OS, Lademo OG (2007) Yield function calibration for orthotropic sheet metals based on uniaxial and plane strain tensile tests. J Mater Process Technol 186:221–235

    Google Scholar 

  225. Tian H, Brownell B, Baral M, Korkolis YP (2017) Earing in cup-drawing of anisotropic Al-6022-T4 sheets. Int J Mater Form 10:329–343

    Google Scholar 

  226. Abspoel M, Scholting ME, Droog JMM (2013) A new method for predicting forming limit curves from mechanical properties. J Mater Process Technol 213:759–769

    Google Scholar 

  227. Baral M, Hama T, Knudsen E, Korkolis YP (2018) Plastic deformation of commercially-pure titanium: experiments and modeling. Int J Plast 105:164–194

    Google Scholar 

  228. Zillmann B, Wagner MFX, Schmaltz S, Schmidl E, Lampke T, Willner K, Halle T (2015) In-plane biaxial compression and tension testing of thin sheet materials. Int J Solids Struct 66:111–120

    Google Scholar 

  229. Mohr D, Dunand M, Kim KH (2010) Evaluation of associated and non-associated quadratic plasticity models for advanced high strength steel sheets under multi-axial loading. Int J Plast 26:939–956

    MATH  Google Scholar 

  230. Coppieters S, Cooreman S, Sol H, Van Houtte P, Debruyne D (2011) Identification of the post-necking hardening behaviour of sheet metal by comparison of the internal and external work in the necking zone. J Mater Process Technol 211:545–552

    Google Scholar 

  231. Grédiac M, Pierron F (2006) Applying the virtual fields method to the identification of elasto-plastic constitutive parameters. Int J Plast 22:602–627

    MATH  Google Scholar 

  232. Pannier Y, Avril S, Rotinat R, Pierron F (2006) Identification of elasto-plastic constitutive parameters from statically undetermined tests using the virtual fields method. Exp Mech 46:735–755

    Google Scholar 

  233. Pierron F, Avril S, Tran VT (2010) Extension of the virtual fields method to elasto-plastic material identification with cyclic loads and kinematic hardening. Int J Solids Struct 47:2993–3010

    MATH  Google Scholar 

  234. Kim JH, Serpanti A, Barlat F, Pierron F, Lee MG (2013) Characterization of the post-necking hardening behaviour using the virtual fields method. Int J Solids Struct 50:3829–3842

    Google Scholar 

  235. Knysh P, Korkolis YP (2017) Identification of the post-necking hardening response of rate- and temperature-dependent metals. Int J Solids Struct 115-116:149–160

    Google Scholar 

  236. Marth S, Häggblad HÅ, Oldenburg M, Östlund R (2016) Post necking characterisation for sheet metal materials using full field measurement. J Mater Process Technol 238:315–324

    Google Scholar 

  237. Marek A, Davis FM, Pierron F (2017) Sensitivity-based virtual fields for the non-linear virtual fields method. Comput Mech 60:409–431

    MathSciNet  MATH  Google Scholar 

  238. Teaca M, Charpentier I, Martiny M, Ferron G (2010) Identification of sheet metal plastic anisotropy using heterogeneous biaxial tensile tests. Int J Mech Sci 52:572–580

    Google Scholar 

  239. Ferron G, Makkouk R, Morreale J (1994) A parametric description of orthotropic plasticity in metal sheets. Int J Plast 10:431–449

    MATH  Google Scholar 

  240. Güner A, Soyarslan C, Brosius A, Tekkaya AE (2012) Characterization of anisotropy of sheet metals employing inhomogeneous strain fields for yld2000-2d yield function. Int J Solids Struct 49:3517–3527

    Google Scholar 

  241. Tardif N, Kyriakides S (2012) Determination of anisotropy and material hardening for aluminum sheet metal. Int J Solids Struct 49:3496–3506

    Google Scholar 

  242. Barlat F, Aretz H, Yoon JW, Karabin ME, Brem JC, Dick RE (2005) Linear transformation-based anisotropic yield functions. Int J Plast 21:1009–1039

    MATH  Google Scholar 

  243. Tsutamori H, Amaishi T, Chorman RR, Eder M, Vitzthum S, Volk V (2020) Evaluation of prediction accuracy for anisotropic yield functions using cruciform hole expansion test. J Manuf Mater Process 4:43–62

    Google Scholar 

  244. An Y, Vegter H, Carless L, Lambriks M (2011) A novel yield locus description by combining the Taylor and the relaxed Taylor theory for sheet steels. Int J Plast 27:1758–1780

    MATH  Google Scholar 

  245. Yoshida K, Ishii A, Tadano Y (2014) Work-hardening behavior of polycrystalline aluminum alloy under multiaxial stress paths. Int J Plast 53:17–39

    Google Scholar 

  246. Yamanaka A, Hashimoto K, Kawaguchi J, Sakurai T, Kuwabara T (2015) Material modeling and forming simulation of 5182 aluminum alloy sheet using numerical biaxial tensile test based on homogenized crystal plasticity finite element method. Keikinzoku/J Jpn Inst Light Metals 65:561–567

    Google Scholar 

  247. Coppieters S, Hakoyama T, Eyckens P, Nakano H, Van Bael A, Debruyne D, Kuwabara T (2019) On the synergy between physical and virtual sheet metal testing: calibration of anisotropic yield functions using a microstructure-based plasticity model. Int J Mat Form 12:741–759

    Google Scholar 

  248. Upadhyay MV, Patra A, Wen W, Panzner T, Van Petegem S, Tomé CN, Lebensohn RA, Van Swygenhoven H (2018) Mechanical response of stainless steel subjected to biaxial load path changes: cruciform experiments and multi-scale modeling. Int J Plast 108:144–168

    Google Scholar 

  249. Hama T, Kobuki A, Takuda (2017) Crystal-plasticity finite-element analysis of anisotropic deformation behavior in a commercially pure titanium grade 1 sheet. Int J Plast 91:77–108

  250. Steglich D, Jeong Y, Andar MO, Kuwabara T (2012) Biaxial deformation behaviour of AZ31 magnesium alloy: crystal-plasticity-based prediction and experimental validation. Int J Solids Struct 49:3551–3561

    Google Scholar 

  251. Kim H, Barlat F, Lee Y, Zaman SB, Lee CS, Jeong Y (2018) A crystal plasticity model for describing the anisotropic hardening behavior of steel sheets during strain-path changes. Int J Plast 111:85–106

    Google Scholar 

  252. Noma N, Kuwabara T (2012) Specimen geometry optimization for in-plane reverse loading test of sheet metal and experimental validation. Steel Res Int Spec Edition: 14th Metal Form 1283–1286

  253. Verma RK, Chung K, Kuwabara T (2011) Effect of pre-strain on anisotropic hardening and springback behavior of an ultra low carbon automotive steel. ISIJ Int 51:482–490

    Google Scholar 

  254. Shirakami S, Yonemura S, Yoshida T, Suzuki N, Kuwabara T (2015) Work-hardening behavior of cold rolled interstitial-free steel sheet and dual phase high strength steel sheet subjected to two-stage, coaxial and non-coaxial tension/compression. Key Eng Mater 651-653:83–88

    Google Scholar 

  255. Shirakami S, Kuwabara T, Tsuru E (2017) Axial compressive deformation behavior and material modeling of steel pipe with bending deformation history. J Jpn Soc Technol Plast 58:692–698 (in Japanese)

    Google Scholar 

  256. Gröge R, Vitek V (2019) Impact of non-Schmid stress components present in the yield criterion for bcc metals on the activity of {110}〈111〉 slip systems. Comput Mater Sci 159:297–305

    Google Scholar 

  257. Ghaffari Tari D, Worswick MJ, Ali U, Gharghouri MA (2014) Mechanical response of AZ31B magnesium alloy: experimental characterization and material modeling considering proportional loading at room temperature. Int J Plast 55:247–267

    Google Scholar 

  258. Habib SA, Khan AS, Gnäupel-Herold T, Lloyd JT, Schoenfeld SE (2017) Anisotropy, tension-compression asymmetry and texture evolution of a rare-earth-containing magnesium alloy sheet, ZEK100, at different strain rates and temperatures: experiments and modeling. Int J Plast 95:163–190

    Google Scholar 

  259. Hama T, Kariyazaki Y, Hosokawa N, Fujimoto H, Takuda H (2012) Work-hardening behaviors of magnesium alloy sheet during in-plane cyclic loading. Mater Sci Eng A 551:209–217

    Google Scholar 

  260. Jia Y, Bai Y (2016) Experimental study on the mechanical properties of AZ31B-H24 magnesium alloy sheets under various loading conditions. Int J Fract 197:25–48

    Google Scholar 

  261. Li M, Lou XY, Kim JH, Wagoner RH (2010) An efficient constitutive model for room-temperature, low-rate plasticity of annealed Mg AZ31B sheet. Int J Plast 26:820–858

    MATH  Google Scholar 

  262. Hama T, Nagao H, Kobuki A, Fujimoto H, Takuda H (2015) Work-hardening and twinning behaviors in a commercially pure titanium sheet under various loading paths. Mater Sci Eng A 620:390–398

    Google Scholar 

  263. Gilles G, Hammami W, Libertiaux V, Cazacu O, Yoon JH, Kuwabara T, Habraken AM, Duchene L (2011a) Experimental characterization and elasto-plastic modeling of the quasi-static mechanical response of TA-6 V at room temperature. Int J Solids Struct 48:1277–1289

    MATH  Google Scholar 

  264. Hammami W, Gilles G, Habraken AM, Duchêne L (2011) Phenomenological and crystal plasticity approaches to describe the mechanical behaviour of Ti6Al4V titanium alloy. Int J Mater Form 4:205–215

    Google Scholar 

  265. Dietrich L, Socha G, Kowalewski ZL (2014) Anti-buckling fixture for large deformation tension – compression cyclic loading of thin metal sheets. Strain 50:174–183

    Google Scholar 

  266. Marcadet SJ, Mohr D (2015) Effect of compression–tension loading reversal on the strain to fracture of dual phase steel sheets. Int J Plast 72:21–43

    Google Scholar 

  267. Lee MG, Kim JH, Kim D, Seo OS, Nguyen NT, Kim HY (2013) Anisotropic hardening of sheet metals at elevated temperature: tension-compressions test development and validation. Exp Mech 53:1039–1055

    Google Scholar 

  268. Zecevic M, Korkolis YP, Kuwabara T, Knezevic M (2016) Dual-phase steel sheets under cyclic tension–compression to large strains: experiments and crystal plasticity modeling. J Mech Phys Solids 96:65–87

    MathSciNet  Google Scholar 

  269. Jeong Y, Gnäupel-Herold T, Barlat F, Iadicola M, Creuziger A, Lee MG (2015) Evaluation of biaxial flow stress based on elasto-viscoplastic self-consistent analysis of X-ray diffraction measurements. Int J Plast 66:103–118

    Google Scholar 

  270. Jeong Y, Iadicola MA, Gnäupel-Herold T, Creuziger A (2016) Multiaxial constitutive behavior of an interstitial-free steel: measurements through X-ray and digital image correlation. Acta Mater 112:84–93

    Google Scholar 

  271. Marciniak Z (1984) Assessment of material formability. Proc Int Conf Adv Techn Plasticity, Tokyo, pp 685–694

    Google Scholar 

  272. Soeiro JMC, Silva CMA, Silva MB, Martins PAF (2015) Revisiting the formability limits by fracture in sheet metal forming. J Mater Process Technol 217:184–192

    Google Scholar 

  273. Banabic D (2000) Forming limits of sheet metals. In: Banabic D (ed) Formability of metallic materials. Springer, Berlin, Heidelberg, pp 173–215

    Google Scholar 

  274. Banabic D (2000) Theoretical models of the FLD’s. In: Banabic D (ed) Formability of metallic materials. Springer, Berlin, Heidelberg, pp 317–327

    Google Scholar 

  275. Banabic D (2016) Multiscale modelling in sheet metal forming. Springer, Berlin, Heidelberg

    Google Scholar 

  276. Felice L, Banabic D (2015) Formability and damage. In: Laperrière L, Reinhart G (eds) Encyclopedia of production engineering. Springer, Heidelberg, pp 539–547

    Google Scholar 

  277. Hora P, Krauer J (eds) (2006) Numerical and experimental methods in prediction of forming limits in sheet metal forming and tube hydroforming processes. FLC Conf, Zürich

  278. Wagoner RH, Chan KS, Keeler SP (eds) (1989) Forming limit diagrams: concepts, methods, and applications. TMS, Warrendale

  279. Xu Y (2006) Modern formability: measurement, Analysis and Applications. Hanser Gardner, Cincinnati

    Google Scholar 

  280. Embury JD, Duncan JL (1981) Formability maps. Annu Rev Mater Sci 11:505–521

    Google Scholar 

  281. Volk W, Suh J (2013) Prediction of formability for non-linear deformation history using generalized forming limit concept (GFLC). AIP Conf Proc 1567:556–561

    Google Scholar 

  282. Stoughton TB, Yoon JW (2011) A new approach for failure criterion for sheet metals. Int J Plast 27:440–459

    MATH  Google Scholar 

  283. Glover G, Duncan GL, Embury JD (1977) Failure maps for sheet metal. Metals Technol 4:153–159

    Google Scholar 

  284. Lloyd DJ, Sang H, Embury JD, Wycliffe P, LeRoy GH (1978) On the description of deformation at large imposed plastic strains. Mater Sci Eng 36:35–46

    Google Scholar 

  285. Arrieux R, Bedrin C, Boivin M (1982) Determination of an intrinsec forming limit stress diagram for isotropic sheets. In: proc. 12th IDDRG Conf. S-ta Margerita Ligure, pp 61-71

  286. Simha CHM, Gholipour J, Bardelcik A, Worswick MJ (2007) Prediction of necking in tubular hydroforming using an extended stress-based FLC. Trans ASME J Eng Mater Technol 129:136–147

    Google Scholar 

  287. Simha CHM, Grantab R, Worswick MJ (2007) Computational analysis of stress-based forming limit curves. Int J Solids Struct 44:8663–8684

    MATH  Google Scholar 

  288. Müschenborn W, Sonne H (1975) Effects of the strain path on the limits of deformation of sheet metal (in German). Arch Eisenhüttenwesen:597–602

  289. Volk W, Gaber W (2017) Investigation and compensation of biaxial pre-strain during the standard Nakajima- and Marciniak-test using generalized forming limit concept. Process Eng 207:568–573

    Google Scholar 

  290. Yoshida K, Kuwabara T, Kuroda M (2007) Path-dependence of the forming limit stresses in a sheet metal. Int J Plast 23:361–384

    MATH  Google Scholar 

  291. Zeng D, Chappuis L, Xia Z, Zhu X (2009) A path independent forming limit criterion for sheet metal forming simulations. SAE Int J Mater Manuf 1:809–817

    Google Scholar 

  292. Dick RE, Yoon JW, Stoughton TB (2016) Path-independent forming limit models for multi-stage forming processes. Int J Mat Form 9:327–337

    Google Scholar 

  293. Stoughton TB (2000) A general forming limit criterion for sheet metal forming. Int J Mech Sci 42:1–27

    MATH  Google Scholar 

  294. Takashina K et al (1968) Relation between the manufacturing conditions and the average strain according to the scribed circle tests in steel sheets. La Metallurgia Ital 8:757–765

    Google Scholar 

  295. Veerman C et al (1971) Determination of appearing and admissible strains in cold-reduced sheets. Sheet Metal Ind 687-694

  296. Bragard A, Baret JC, Bonnarens H (1972) A simplified technique to determine the FLD at onset of necking. CRM 33:53–63

    Google Scholar 

  297. d’Hayer R, Bragard A (1975) Determination of the limiting strains at the onset of necking. CRM 42:33–35

    Google Scholar 

  298. Hecker SS (1972) A simple forming limit curve technique and results on aluminum alloys. In: proc. IDDRG Congress, Amsterdam, pp 5.1–5.8

  299. Kobayashi T, Ishigaki H, Tadayuki (1972) A effect of strain ratios on the deforming limit of steel sheet and its application to the actual press forming. In: Proc IDDRG Congress, Amsterdam, pp 8.1–8.4

  300. Methods of determining the forming limit curve. IDDRG Meeting 1983, Zurich

  301. Marron G et al (1997) A new necking criterion for the forming limit diagrams, IDDRG 1997 WG meeting, Haugesund

  302. Volk W (2006) New experimental and numerical approach in the evaluation of the FLD with the FE-method. In: Hora P (ed) Numerical and experimental methods in prediction of forming limits in sheet forming and tube hydroforming processes. ETH, Zürich, pp 26–30

    Google Scholar 

  303. Volk W et al (2008) Benchmark 1. Virtual forming limit curves. Part A. physical tryout report. In: Hora P (ed) Proc NUMISHEET 2008 Conf (Part B Benchmark study), Interlaken, pp. 3–9

  304. Volk W et al (2008) Benchmark 1. Virtual forming limit curves. Part B. benchmark analysis. In: Hora P (ed) Proc NUMISHEET 2008 Conf (Part B. Benchmark study), Interlaken, pp. 11–42

  305. Hashemi R, Abrinia K, Assempour A (2013) The strain gradient approach to predict necking in tube hydroforming. J Manuf Process 15:51–55

    Google Scholar 

  306. Lumelskyj D, Rojek J, Banabic D, Lazarescu L (2017) Detection of strain localization in Nakazima formability test -experimental research and numerical simulation. Procedia Eng 183:89–94

    Google Scholar 

  307. Lumelskyj D, Rojek J, Banabic D, Lazarescu L (2017) Determination of forming limit curve by finite element method simulation. Procedia Manuf 27:78–82

    Google Scholar 

  308. Situ Q, Jain MK, Metzger DR (2011) Determination of forming limit diagrams of sheet materials with a hybrid experimental–numerical approach. Int J Mech Sci 53:707–719

    Google Scholar 

  309. Hotz W (2006) European efforts in standardization of FLC. In: Hora P (ed) Numerical and experimental methods in prediction of forming limits in sheet forming and tube hydroforming processes. ETH Zürich, Zürich, pp 24–25

    Google Scholar 

  310. Hotz W, Timm J (2008) Experimental determination of forming limit curves (FLC). In: Hora P (ed.), Proc NUMISHEET 2008 Conf, Interlaken, pp. 271–278

  311. Liebertz H et al (2004) Guideline for the determination of forming limit curves. In: Proc. IDDRG Conf, Sindelfilgen, pp. 216–224

  312. Thoors H et al (2008) FLD assessment using the proposed new standard. IDDRG 2008 Int Conf, Olofström, pp. 25–35

  313. Leppin C, Li J, Daniel D (2008) Application of a method to correct the effect of non-proportional strain paths on Nakajima test based forming limit curves. In: Hora P (ed), Proc NUMISHEET 2008 Conf, Interlaken, pp. 217–221

  314. Hogström P, Ringsberg JW, Johnson E (2009) An experimental and numerical study of the effects of length scale and strain state on the necking and fracture behaviour in sheet metals. Int J Impact Eng 36:1194–1203

    Google Scholar 

  315. Dicecco S, Di Ciano M, Butcher C, Worswick M (2018) Die-quench formability of a developmental AA7xxx aluminum alloy sheet, proceedings international deep draw research group (IDDRG) 37th international conference, Waterloo, Ontario, June 3-7, 2018

  316. Morales D, Martinez A, Vallellano C, Garcia-Lomas FJ (2009) Bending effect in the failure of stretch-bend metal sheets. Int J Mat Form 2:813–816

    Google Scholar 

  317. Silva MB, Martínez-Donaire AJ, Centeno G, Morales-Palma D, Vallellano C, Martins PAF (2015) Recent approaches for the determination of forming limits by necking and fracture in sheet metal forming. Procedia Eng 132:342–349

    Google Scholar 

  318. Zahedi A, Mollaei Dariani B, Mirnia MJ (2019) Experimental determination and numerical prediction of necking and fracture forming limit curves of laminated Al/cu sheets using a damage plasticity model. Int J Mech Sci 153–154:341–358

    Google Scholar 

  319. Iquilio RA et al (2019) Novel experimental method to determine the limit strain by means of thickness variation. Int J Mech Sci 153–154:208–218

    Google Scholar 

  320. Min J, Stoughton TB, Carsley JE, Lin J (2016) Compensation for process-dependent effects in the determination of localized necking limits. Int J Mech Sci 117:115–134

    Google Scholar 

  321. Min J, Stoughton TB, Carsley JE, Lin J (2017) A method of detecting the onset of localized necking based on surface geometry measurements. Exp Mech 57:521–535

    Google Scholar 

  322. Min J, Stoughton TB, Carsley JE, Lin J (2017) An improved curvature method of detecting the onset of localized necking in Marciniak tests and its extension to Nakazima tests. Int J Mech Sci 123:238–252

    Google Scholar 

  323. Elangovan K, Sathiya Narayanan C, Narayanasamy R (2010) Modelling of forming limit diagram of perforated commercial pure aluminium sheets using artificial neural network. Comput Mater Sci 47:1072–1078

    Google Scholar 

  324. Elangovan K, Sathiya Narayanan C, Narayanasamy R (2011) Modelling the correlation between the geometrical features and the forming limit strains of perforated Al 8011 sheets using artificial neural network. Int J Mater Form 4:389–399

    Google Scholar 

  325. Mitukiewicz G, Anantheshwara K, Zhou G, Mishra RK, Jain MK (2014) A new method of determining forming limit diagram for sheet materials by gas blow forming. J Mater Process Technol 214:2960–2970

    Google Scholar 

  326. Karadogan C, Tamer ME (2015) Development of a new and simplified procedure for the experimental determination of forming limit curves. CIRP Ann Manuf Technol 62:265–268

    Google Scholar 

  327. Marin J, Ulrich BH, Hughes WP (1951) Plastic stress-strain relations for 75S-T6 aluminum alloy subjected to biaxial tensile stresses. NACA report TN 2425

  328. Yu Y, Wan M, Wu X-D, Zhou X-B (2002) Design of a cruciform biaxial tensile specimen for limit strain analysis by FEM. J Mater Process Technol 123:67–70

    Google Scholar 

  329. Cruciform Multiaxial Mechanical (2013) The National Institute of Standards and Technology https://www.nist.gov/programs-projects/cruciform-multiaxial-mechanical-testing

  330. Shao Z, Li N, Lin J, Dean T (2016) Development of a new biaxial testing system for generating forming limit diagrams for sheet metals under hot stamping conditions. Exp Mech 56:1489–1500

    Google Scholar 

  331. Shao Z, Li N, Lin J, Dean T (2017) Formability evaluation for sheet metals under hot stamping conditions by a novel biaxial testing system and a new materials model. Int J Mech Sci 120:149–158

    Google Scholar 

  332. Ghosh AK, Hecker SS (1974) Stretching limits in sheet metals: in-plane versus out-of- plane deformation. Metall Trans A 5:2161–2164

    Google Scholar 

  333. Charpentier P (1975) Influence of punch curvature on stretching limits of sheet steel. Metall Mater Trans A 6:1665–1669

    Google Scholar 

  334. Martínez-Donaire AJ, Vallellano C, Morales D, Garcia-Lomas FJ (2010) Experimental detection of necking in stretch-bending conditions: a critical review and new methodology. Steel Res Int 81:785–788

    Google Scholar 

  335. Martínez-Palmeth LH, Martínez-Donaire AJ, Centeno G, García-Lomas FJ, Vallellano C (2013) Formability of automotive H240LA steel sheets in stretch–bending processes. Process Eng 63:669–677

    Google Scholar 

  336. Martínez-Palmeth LH, Martínez-Donaire AJ, Vallellano C (2019) Formability limits of high-strength H240LA steel sheets under stress/strain gradients. Mech Mater 132:47–56

    Google Scholar 

  337. Morales-Palma D, Vallellano C, García-Lomas F (2013) Assessment of the effect of the through-thickness strain/stress gradient on the formability of stretch-bend metal sheets. Mat Des 50:798–809

    Google Scholar 

  338. Vallellano C, Morales D, García-Lomas FJ (2008) On the study of the effect of bending in the formability of metal sheets. In: Proc Numisheet 2008 Conf Interlaken, Switzerland, pp 85–90

  339. Atzema EH, Fictorie E, van den Boogaard AH, Droog JMM. (2010) The influence of curvature on FLC’s of mild steel, (a)HSS and aluminium. In: Proc. IDDRG Conf, Graz, Austria, pp. 519–528

  340. Martinez Lopez A, van den Boogaard AH (2011) Formability limit curves under stretch-bending. IDDRG 2011 Bilbao 1-8

  341. Hou B, Perdahcioglu ES, van den Boogaard AH, Kitting D (2014) Study of instability and forming limit of sheet metal under stretch-bending. Key Eng Mater 611-612:84–91

    Google Scholar 

  342. Abbas A, Campoli G, Sinke J, Benedictus R (2011) Fracture in bending the straining limits of monolithic sheets and machined. Mater Des 32:1229–1241

    Google Scholar 

  343. Affronti E, Merklein M (2018) Analysis of the bending effects and the biaxial pre-straining in sheet metal stretch forming processes for the determination of the forming limits. Int J Mech Sci 138–139:295–309

    Google Scholar 

  344. Habibi M, Hashemi R, Ghazanfari A, Naghdabadi R, Assempour A (2016) Forming limit diagrams by including the M–K model in finite element simulation considering the effect of bending. J Mater Des App 232:625–636

    Google Scholar 

  345. Liewald M, Schleich R (2010) Development of an anisotropic failure criterion for characterising the influence of curvature on forming limits of aluminium sheet metal alloys. Int J Mater Form 3:1175–1178

    Google Scholar 

  346. Hu P, Liu W, Ying L, Zhang J, Wang D (2017) A thermal forming limit prediction method considering material damage for 22MnB5 sheet. Int J Adv Manuf Technol 92:627–638

    Google Scholar 

  347. Ma B, Wan M, Li XJ, Wu XD, Diao KS (2017) Evaluation of limit strain and temperature history in hot stamping of advanced high strength steels (AHSS). Int J Mech Sci 128–129:607–613

    Google Scholar 

  348. Mohamed MS, Foster AD, Lin J, Balint DS, Dean TA (2012) Investigation of deformation and failure features in hot stamping of AA6082: experimentation and modelling. Int J Mach Tools Manuf 53:27–38

    Google Scholar 

  349. Shao Z, Bai Q, Li N, Lin J, Shi Z, Stanton M, Watson D, Dean T (2018) Experimental investigation of forming limit curves and deformation features in warm forming of an aluminium alloy. J Eng Manuf 232:465–474

    Google Scholar 

  350. Zheng K, Politis DJ, Wang L, Lin J (2018) A review on forming techniques for manufacturing lightweight complex—shaped aluminium panel components. Int J Light Mater Manuf 1:55–80

    Google Scholar 

  351. Bariani PF, Bruschi S, Ghiotti A, Michieletto F (2013) Hot stamping of AA5083 aluminium alloy sheets. CIRP Ann Manuf Technol 62:251–254

    Google Scholar 

  352. Ding J, Zhang C, Chu X, Zhao G, Leotoing L, Guines D (2015) Investigation of the influence of the initial groove angle in the M–K model on limit strains and forming limit curves. Int J Mech Sci 98:59–69

    Google Scholar 

  353. Bagheriasl R, Worswick MJ (2015) Formability of AA3003 brazing sheet at elevated temperatures: limiting dome height tests and determination of forming limit diagrams. Int J Mater Form 8:229–244

    Google Scholar 

  354. Wang H, Luo Y, Friedman P, Chen M, Gao L (2012) Warm forming behavior of high strength aluminum alloy AA7075. Trans Nonferrous Metals Soc China 22:1–7

    Google Scholar 

  355. Wang H, Yan Y, Han F, Wan F (2017) Experimental and theoretical investigations of the forming limit of 5754O aluminum alloy sheet under different combined loading paths. Int J Mech Sci 133:147–166

    Google Scholar 

  356. Xiao W, Wang B, Zheng K (2017) An experimental and numerical investigation on the formability of AA7075 sheet in hot stamping condition. Int J Adv Manuf Technol 92:3299–3309

    Google Scholar 

  357. Sorgente D, Scintilla LD, Palumbo G, Tricarico L (2010) Blow forming of AZ31 magnesium alloy at elevated temperatures. Int J Mater Form 3:13–19

    Google Scholar 

  358. Ghiotti A, Bruschi S (2010) A novel experimental set-up for warm incremental forming of AZ31B magnesium alloy sheets. Steel Res Int 81:950–953

    Google Scholar 

  359. Zhang H, Huang GS, Kong D, Sang G, Song B (2011) Influence of initial texture on formability of AZ31B magnesium alloy sheets at different temperatures. J Mater Process Technol 211:1575–1580

    Google Scholar 

  360. Huang GS, Zhang H, Gao XS, Song B, Zhang L (2011) Forming limit of textured AZ31B magnesium alloy sheet at different temperatures. Trans Nonferrous Metals Soc China 21:836–843

    Google Scholar 

  361. Ambrogio G, Filice L, Gagliardi F (2012) Formability of lightweight alloys by hot incremental sheet forming. Mater Des 34:501–508

    Google Scholar 

  362. Boba M, Butcher C, Panahi N, Worswick MJ, Mishra R, Carter J (2017) Formability of magnesium-rare earth alloy ZEK100 sheet at elevated temperatures. Int J Mater Form 10:181–191

    Google Scholar 

  363. Berge F, Krüger L, Ullrich C (2014) Forming limit diagrams of twin-roll cast, rolled and heat-treated AZ31 as a function of temperature and loading rate. Mater Sci Eng A 614:27–35

    Google Scholar 

  364. Koh Y, Kim D, Seok DY, Bak J, Kim SW, Lee YS, Chung K (2015) Characterization of mechanical property of magnesium AZ31 alloy sheets for warm temperature forming. Int J Mech Sci 93:204–217

    Google Scholar 

  365. Kim SJ, Lee YS, Kim D (2016) Analysis of formability of ca-added magnesium alloy sheets at low temperatures. Mater Charact 113:152–159

    Google Scholar 

  366. Stutz L, Bohlen J, Kurz G, Letzig D, Kainer U (2011) Influence of the processing of magnesium alloys AZ31 and ZE10 on the sheet formability at elevated temperature. Key Eng Mater 473:335–342

    Google Scholar 

  367. Mekonen MN, Steglich D, Bohlen J, Stutz L, Letzig D, Mosler J (2013) Experimental and numerical investigation of Mg alloy sheet formability. Mater Sci Eng A 586:204–214

    Google Scholar 

  368. Yang H, Fan XG, Sun ZC, Guo LG, Zhan M (2011) Recent developments in plastic forming technology of titanium alloys. Sci China Technol Sci 54:490–501

    Google Scholar 

  369. Bodunrin MO, Chown LH, van der Merwe JW, Alaneme KA (2019) Hot working of Ti-6Al-4V with a complex initial microstructure. Int J Mater Form 12:857–874

    Google Scholar 

  370. Karbasian H, Tekkaya AE (2010) A review on hot stamping. J Mater Process Technol 210:2103–2118

    Google Scholar 

  371. Lihui L, Kangning L, Cai G, Yang X, Guo C, Bu G (2014) A critical review on special forming processes and associated research for lightweight components based on sheet and tube materials. Manuf Rev 1:9–20

    Google Scholar 

  372. Lin L (2015) Fundamentals of materials modelling for metals processing technologies: theories and applications. Imperial College Press, London

    Google Scholar 

  373. Drewes EJ, Martini A (1976) Einfluss der Umformgeschwindigkeit auf die Grenzformaenderungen und die Formaenderungsverteilung von Feinblech. Arch Eissenhuettenwessen 47:167–172

    Google Scholar 

  374. Ayres RA, Wenner ML (1978) Strain and strain–rate hardening effect on punch stretching of 5182-O aluminium at elevated temperature. Sheet Metal Ind 55:1208–1216

    Google Scholar 

  375. Percy JH (1980) The effect of strain rate on the FLD for sheet metal. CIRP Ann Manuf Technol 29:151–152

    Google Scholar 

  376. Li MY, Zhu X, Chu E (2012) Effect of strain rate sensitivity on FLDs—An instability approach. Int J Mech Sci 64:273–279

    Google Scholar 

  377. Yamashita M, Nikawa M, Kuroda T (2018) Effect of strain-rate on forming limit in biaxial stretching of aluminium sheet. Proc Manuf 15:877–883

    Google Scholar 

  378. Psyk V, Risch D, Kinsey BL, Tekkaya AE, Kleiner M (2011) Electromagnetic forming – a review. J Mater Process Technol 211:787–829

    Google Scholar 

  379. Smerd R, Winkler S, Salisbury C, Worswick MJ, Lloyd D, Finn M (2005) High strain rate tensile testing of automotive aluminum alloy sheet. Int J Impact Eng 32:541–560

    Google Scholar 

  380. Imbert J, Worswick M, Winkler S, Golovashchenko S, Dmitriev V (2005) Analysis of the increased formability of aluminum alloy sheet formed using electromagnetic forming. SAE technical paper series 2005-01-0082

  381. Imbert J, Worswick M (2012) Reduction of a pre-formed radius in aluminium sheet using electromagnetic and conventional forming. J Mater Process Technol 212:1963–1972

    Google Scholar 

  382. Jacques N (2020) An analytical model for necking strains in stretched plates under dynamic biaxial loading. Int J Solids Struct. https://doi.org/10.1016/j.ijsolstr.2020.05.028

  383. Nakazima K, Kikuma T, Hasuka K (1968) Study on the formability of steel sheets. Yamata Tech Rep 264:8517–8530

    Google Scholar 

  384. Graf AF, Hosford WF (1993) Effect of changing strain paths on forming limit diagrams of Al 2008-T4. Metall Trans A 24:2503–2512

    Google Scholar 

  385. Rojek J, Lumelskyy D, Pęcherski R, Grosman F, Tkocz M, Chorzępa W (2013) Forming limit curves for complex strain paths. Arch Metall Mater 58:587–593

    Google Scholar 

  386. El Fakir O, Wang LL, Balint D, Dear JP, Lin J (2014) Predicting effect of temperature, strain rate and strain path changes on forming limit of lightweight sheet metal alloys. Process Eng 81:736–741

    Google Scholar 

  387. Mattiasson K, Jergéus J, DuBois P (2014) On the prediction of failure in metal sheets with special reference to strain path dependence. Int J Mech Sci 88:175–191

    Google Scholar 

  388. Suttner S, Merklein M (2015) Characterization of the shear stress state under non-proportional strain paths realized by biaxial stretching in the Marciniak test. Mater Today Proc 1:98–106

    Google Scholar 

  389. Nurcheshmeh M, Green DE (2016) Prediction of forming limit curves for nonlinear loading paths using quadratic and non-quadratic yield criteria and variable imperfection factor. Mater Des 91:248–255

    Google Scholar 

  390. Swift HW (1952) Plastic instability under plane stress. J Mech Phys Solid 1:1–16

    Google Scholar 

  391. Hill R (1952) On discontinous plastic states, with special reference to localized necking in thin sheets. J Mech Phys Solid 1:19–30

    Google Scholar 

  392. Hora P, Tong L (1994) Prediction methods for ductile sheet metal failure using FE-simulation. In: Proc. IDDRG Congress, Lisbon, pp. 363–375

  393. Hora P, Tong L, Reissner J (1996) A prediction method for ductile sheet metal failure. In: Lee JK, Kinzel GL, Wagoner RH (eds), Proc NUMISHEET 1996 Conf, Dearborn, pp 252-256

  394. Marciniak Z, Kuczynski K (1967) Limit strains in the processes of stretch forming sheet metal. Int J Mech Sci 9:609–620

    MATH  Google Scholar 

  395. Barata da Rocha A, Jalinier JM (1984) Plastic instability of sheet metals under simple and complex strain paths. Trans ISIJ 24:132–140

    Google Scholar 

  396. Stören S, Rice JR (1975) Localized necking in thin sheets. J Mech Phys Solids 23:421–441

    MATH  Google Scholar 

  397. Dudzinski D, Molinari A (1988) Instability of visco-plastic deformation in biaxial loading. C R Acad Sci Paris 307:1315–1321

    MATH  Google Scholar 

  398. Bressan JD, Williams JA (1983) The use of a shear instability criterion to predict local necking in sheet metal deformation. Int J Mech Sci 25:155–168

    MATH  Google Scholar 

  399. Stoughton TB (2008) Generalized metal failure criterion. In: Hora P (ed), Proc NUMISHEET 2008 Conf (Part B. Benchmark study), Interlaken, pp. 241–246

  400. Banabic D, Kami A, Comsa DS, Eyckens P (2020) Developments of the Marciniak-Kuczynski model for sheet metal formability: a review. J Mater Process Technol (in press). https://doi.org/10.1016/j.jmatprotec.2019.116446

  401. Bassani J, Hutchinson J, Neale K (1979) On the prediction of necking in anisotropic sheets. In: Lippmann H (ed) Metal forming plasticity. Springer, Berlin, pp 1–13

    Google Scholar 

  402. Bate P (1984) The prediction of limit strains in steel sheet using a discrete slip plasticity model. Int J Mech Sci 26:373–384

    Google Scholar 

  403. Asaro RJ, Needleman A (1985) Texture development and strain hardening in rate-dependent polycrystals. Acta Metall 33:923–953

    Google Scholar 

  404. van Houtte P, Toth LS (1993) Generalization of the Marciniak-Kuczynski defect model for predicting FLD. In: Lee WB (ed) Advances in engineering plasticity and its application. Elsevier, Amsterdam, pp 1013–1020

    Google Scholar 

  405. Wu PD, Neale KW, van der Giessen E (1997) On crystal plasticity FLD analysis. Proc R Soc Lond 453:1831–1848

    Google Scholar 

  406. Serenelli MJ, Bertinetti MA, Signorelli JW (2010) Investigation of the dislocation slip assumption on formability of BCC sheet metals. Int J Mech Sci 52:1723–1734

    Google Scholar 

  407. Serenelli MJ, Bertinetti MA, Signorelli JW (2011) Study of limit strains for FCC and BCC sheet metal using polycrystal plasticity. Int J Solids Struct 48:1109–1119

    MATH  Google Scholar 

  408. Signorelli JW, Serenelli MJ, Bertinetti MA (2012) Experimental and numerical study of the role of crystallographic texture on the formability of an electro-galvanized steel sheet. J Mater Process Technol 212:1367–1376

    Google Scholar 

  409. Inal K, Neale KW, Aboutajeddine A (2005) Forming limit comparisons for FCC and BCC sheets. Int J Plast 21:1255–1266

    MATH  Google Scholar 

  410. Inal K, Wu PD, Neale KW (2002) Instability and localized deformation in polycrystalline solids under plane-strain tension. Int J Solids Struct 39:983–1002

    MATH  Google Scholar 

  411. Nagra JS, Brahme A, Lebensohn RA, Inal K (2017) Efficient fast Fourier transform-based numerical implementation to simulate large strain behavior of polycrystalline materials. Int J Plast 98:65–82

    Google Scholar 

  412. Hancock J, Mackenzie A (1976) On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J Mech Phys Solids 24:147–160

    Google Scholar 

  413. Gurson AL (1975) Plastic flow and fracture behavior of ductile ma-terials incorporating void nucleation, growth and coales-cence, PhD Diss, Brown University

  414. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth part I-yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2–15

    Google Scholar 

  415. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169

    Google Scholar 

  416. Richmond O, Smelser R (1985) Alcoa technical center memorandum

  417. Leblond J, Perrin G, Suquet P (1994) Exact results and approximate models for porous viscoplastic solids. Int J Plast 10:213–235

    MATH  Google Scholar 

  418. Cazacu O, Revil-Baudard B, Lebensohn RA, Garajeu M (2013) On the combined effect of pressure and third invariant on yield-ing of porous solids with von Mises matrix. J Appl Mech 80:064501

    Google Scholar 

  419. Cazacu O, Revil-Baudard B, Chandola N, Kondo D (2014) New analytical criterion for porous solids with Tresca matrix under axisymmetric loadings. Int J Solids Struct 51:861–874

    Google Scholar 

  420. Cazacu O, Stewart JB (2009) Analytic plastic potential for porous aggregates with matrix exhibiting tension–compression asymmetry. J Mech Phys Solids 57:325–341

    MathSciNet  MATH  Google Scholar 

  421. Benzerga, A. A, Besson, J. (2001). Plastic potentials for anisotropic porous solids. Eur J Mech-A/Solids, 20(3): 397–434

  422. Stewart JB, Cazacu O (2011) Analytical yield criterion for an anisotropic material containing spherical voids and exhibiting tension–compression asymmetry. Int J Solids Struct 48:357–373

    MATH  Google Scholar 

  423. Thuillier S, Maire E, Brunet M (2012) Ductile damage in alumini-um alloy thin sheets: correlation between micro-tomography observations and mechanical modeling. Mater Sci Eng A 558:217–225

    Google Scholar 

  424. Revil-Baudard B, Cazacu O, Thuillier S, Maire E (2013) Effect of stress triaxiality on porosity evolution in notched bars: quantitative agreement between a recent dilatational model and X-ray tomography data. Mech Res Commun 50:77–82

    Google Scholar 

  425. Maire E, Zhou S, Adrien J, Dimichiel M (2011) Damage quantification in aluminum alloys in situ tensile tests in X-ray tomography. Eng Fract Mech 78:2679–2690

    Google Scholar 

  426. Lemaitre J (2001) Continuous damage. In: Lemaitre J (ed) Handbook of materials behavior models. Academic Press, San Diego, pp 411–793

    Google Scholar 

  427. Lin J, Mohamed M, Balint D, Dean TA (2013) The development of continuum damage mechanics-based theories for predicting forming limit diagrams for hot stamping applications. Int J Damage Mech 23:684–701

    Google Scholar 

  428. Malcher L, Andrade Pires FM, César de Sá JMA (2014) An extended GTN model for ductile fracture under high and low stress triaxiality. Int J Plast 54:193–228

    Google Scholar 

  429. Yang XY, Lang LH, Liu KN, Guo C (2015) Modified MK model combined with ductile fracture criterion and its application in warm hydroforming. Trans Nonferrous Metals Soc China 25:3389–3398

    Google Scholar 

  430. Tang BT, Bruschi S, Ghiotti A, Bariani PF (2016) An improved damage evolution model to predict fracture of steel sheet at elevated temperature. J Mater Process Technol 228:76–87

    Google Scholar 

  431. Gologanu M, Comsa DS, Banabic D (2013) Theoretical model for forming limit diagram predictions without initial inhomogeneity. AIP Conf Proc 1532:245–253

    Google Scholar 

  432. Kami A, Dariani BM, Vanini AS, Comsa DS, Banabic D (2015) Numerical determination of the forming limit curves of anisotropic sheet metals using GTN damage model. J Mater Process Technol 216:472–483

    Google Scholar 

  433. Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and Lode dependence. Int J Plast 24:1071–1096

    MATH  Google Scholar 

  434. Bai Y, Wierzbicki T (2008) Forming severity concept for predicting sheet necking under complex loading histories. Int J Mech Sci 50:1012–1022

    MATH  Google Scholar 

  435. Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46:81–98

    Google Scholar 

  436. Bao Y, Wierzbicki T (2005) On the cut-off value of negative triaxiality for fracture. Eng Fract Mech 72:1049–1069

    Google Scholar 

  437. Bai Y, Wierzbicki T (2015) A comparative study of three groups of ductile fracture loci in the 3D space. Eng Fract Mech 135:147–167

    Google Scholar 

  438. Jia Y, Bai Y (2016) Ductile fracture prediction for metal sheets using all-strain-based anisotropic eMMC model. Int J Mech Sci 115-116:516–531

    Google Scholar 

  439. Li Y, Wierzbicki T (2010) Prediction of plane strain fracture of AHSS sheets with post-initiation softening. Int J Solids Struct 47:2316–2327

    MATH  Google Scholar 

  440. Li Y, Luo M, Gerlach J, Wierzbicki T (2010) Prediction of shear-induced fracture in sheet metal forming. J Mater Process Technol 210:1858–1869

    Google Scholar 

  441. Luo M, Wierzbicki T (2010) Numerical failure analysis of a stretch-bending test on dual-phase steel sheets using a phenomenological fracture model. Int J Solids Struct 47:3084–3102

    MATH  Google Scholar 

  442. Wierzbicki T, Bao Y, Lee YW, Bai Y (2005) Calibration and evaluation of seven fracture models. Int J Mech Sci 47:719–743

    Google Scholar 

  443. Lou YS, Huh H, Lim S, Pack K (2012) New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals. Int J Solids Struct 49:3605–3615

    Google Scholar 

  444. Lou YS, Yoon JW, Huh H (2014) Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. Int J Plast 54:56–80

    Google Scholar 

  445. Park N, Huh H, Lim SJ, Lou Y, Kang YS, Seo MH (2017) Fracture-based forming limit criteria for anisotropic materials in sheet metal forming. Int J Plast 96:1–35

    Google Scholar 

  446. Park N, Huh H, Yoon JW (2018) Anisotropic fracture forming limit diagram considering non-directionality of the equi-biaxial fracture strain. Int J Solids Struct 151:181–194

    Google Scholar 

  447. Li H, Fu MW, Lu J, Yang H (2011) Ductile fracture: experiments and computations. Int J Plast 27:147–180

    Google Scholar 

  448. Lou YS, Chen L, Clausmeyer T, Tekkaya EA, Yoon JW (2017) Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals. Int J Solids Struct 112:169–184

    Google Scholar 

  449. Yoon, J.W, Lou, Y, Yoon, J and Glazoff, M.V. ( 2014) Asymmetric yield function based on the stress invariants for pressure sensitive metals. Int J Plast, 56 :184–202

  450. Keeler SP (1970) La formabilité est améliorée par pression hydrostatique. Mach Mod:43–45

  451. Banabic D, Soare S (2008) On the effect of the normal pressure upon the forming limit strains. In: Hora P (ed): Proc. NUMISHEET 2008 Conf., Interlaken, pp 199-204

  452. Wu PD et al (2008) Effects of superimposed hydrostatic pressure on sheet metal formability. Int J Plast 25:1711–1725

    MATH  Google Scholar 

  453. Allwood JM, Shouler DR (2008) Generalised forming limit diagrams showing increased forming limits with non-planar stress states. Int J Plast 25:1207–1230

    MATH  Google Scholar 

  454. Liu B, Lang L, Zeng Y, Lin J (2012) Forming characteristic of sheet hydroforming under the influence of through-thickness normal stress. J Mater Process Technol 212:1875–1884

    Google Scholar 

  455. Zhang F, Chen J, Chen J, Lu J, Liu G, Yuan S (2012) Overview on constitutive modeling for hydroforming with the existence of through-thickness normal stress. J Mater Process Technol 212:2228–2237

    Google Scholar 

  456. Zhang F, Chen J, Chen J (2014) Effect of through-thickness normal stress on forming limits under Yld2003 yield criterion and MK model. Int J Mech Sci 89:92–100

    Google Scholar 

  457. Nurcheshmeh M, Green DE (2014) The effect of normal stress on the formability of sheet metals under non-proportional loading. Int J Mech Sci 82:131–139

    Google Scholar 

  458. Lang L, Cai G, Liu K, Alexandrov S, Du P, Zheng H (2015) Investigation on the effect of through thickness normal stress on forming limit at elevated temperature by using modified M-K model. Int J Mater Form 8:211–228

    Google Scholar 

  459. Hashemi R, Abrinia K, Faraji G (2015) A methodology for determination of extended strain-based forming limit curve considering the effects of strain path and normal stress. J Mech Eng Sci 229:1537–1547

    Google Scholar 

  460. Hashemi R, Abrinia K, Assempour A, Khakpour Nejadkhaki H, Shahbazi Mastanabad A (2016) Forming limit diagram of tubular hydroformed parts considering the through-thickness compressive normal stress. J Mater Design Appl 230:332–343

    Google Scholar 

  461. Mirfalah-Nasiri SM, Basti A, Hashemi R (2016) Forming limit curves analysis of aluminum alloy considering the through-thickness normal stress, anisotropic yield functions and strain rate. Int J Mech Sci 117:93–101

    Google Scholar 

  462. Mirfalah-Nasiri SM, Basti A, Hashemi R, Darvizeh A (2018) Effects of normal and through-thickness shear stresses on the forming limit curves of AA3104-H19 using advanced yield criteria. Int J Mech Sci 137:15–23

    Google Scholar 

  463. Ma B, Wan W, Zhang H, Gong XL, Wu XD (2018) Evaluation of the forming limit curve of medium steel plate based on nonconstant through-thickness normal stress. J Manuf Process 33:175–183

    Google Scholar 

  464. Bettaieb MB, Abed-Meraim F (2017) Theoretical and numerical investigation of the impact of out-of-plane compressive stress on sheet metal formability. Int J Mech Sci 130:244–257

    Google Scholar 

  465. Shi Y, Jin H, Wu PD, Lloyd DJ (2017) Effects of superimposed hydrostatic pressure on necking and fracture of tube under hydroforming. Int J Solids Struct 113–114:209–217

    Google Scholar 

  466. Hu Q, Li X, Chen J (2019) Forming limit evaluation by considering through-thickness normal stress: theory and modeling. Int J Mech Sci 155:187–196

    Google Scholar 

  467. Soare S, Barlat F (2014) About the influence of hydrostatic pressure on the yielding and flow of metallic polycrystals. J Mech Phys Solids 67:87–99

    MathSciNet  MATH  Google Scholar 

  468. Eyckens P, Van Bael A, Van Houtte P (2009) Marciniak-Kuczynski type modelling of the effect of through-thickness shear on the forming limits of sheet metal. Int J Plast 25:2249–2268

    Google Scholar 

  469. Eyckens P, Van Bael A, Van Houtte P (2011) An extended Marciniak-Kuczynski model for anisotropic sheet subjected to monotonic strain paths with through-thickness shear. Int J Plast 27:1577–1597

    MATH  Google Scholar 

  470. Fatemi A, Dariani BM (2015) Forming limit prediction of anisotropic material subjected to normal and through thickness shear stresses using a modified M–K model. Int J Adv Manuf Technol 80:1497–1509

    Google Scholar 

  471. Darabi R, Deilami Azodi H, Bagherzadeh S (2017) Investigation into the effect of material properties and arrangement of each layer on the formability of bimetallic sheets. J Manuf Process 29:133–148

    Google Scholar 

  472. Kami A, Chung K, Banabic D (2017) Analytical and numerical studies on formability of metal/polymer/metal sandwich sheets. Rom J Technol Sci- Appl Mech 56:28–38

    Google Scholar 

  473. Sun T, Liang J, Guo X, Ren M, Wang L (2015) Optical measurement of forming limit and formability of cu/Al clad metals. J Mater Eng Perform 24:1426–1433

    Google Scholar 

  474. Kim YS, Yang SH (2017) Effect of plastic anisotropy on the formability of aluminum 6016-T4 sheet material. Chin J Mech Eng 30:625–631

    Google Scholar 

  475. Paraianu L, Dragos G, Bichis I, Comsa DS, Banabic D (2010) A new formulation of the modified maximum force criterion (MMFC). Int J Mater Form 3:243–246

    Google Scholar 

  476. Pham QT, Nguyen DT, Kim JJ, Kim YS (2019) A graphical method to estimate forming limit curve of sheet metals. Key Eng Mater 794:55–62

    Google Scholar 

  477. Xu ZT, Peng LF, Fu MW, Lai XM (2015) Size effect affected formability of sheet metals in micro/meso scale plastic deformation: experiment and modeling. Int J Plast 68:34–54

    Google Scholar 

  478. Hu Q, Zhang L, Ouyang Q, Li X, Zhu X, Chen J (2018) Prediction of forming limits for anisotropic materials with nonlinear strain paths by an instability approach. Int J Plast 103:143–167

    Google Scholar 

  479. Zajkani A, Bandizaki A (2017) An efficient model for diffuse to localized necking transition in rate-dependent bifurcation analysis of metallic sheets. Int J Mech Sci 133:794–803

    Google Scholar 

  480. Drucker DC (1951) A more fundamental approach to plastic stress-strain relations. Proc First US Nat Congr App Mech ASME New York pp 487–491

  481. Hecker SS (1976) In: Stricklin A, Saczalski KC (eds) Experimental studies of yield phenomena in biaxially loaded metals. Constitutive equations in Viscoplasticity: computational and engineering aspects. ASME, New York, pp l–33

    Google Scholar 

  482. Stoughton TB (2002) A non-associated flow rule for sheet metal forming. Int J Plast 18:687–714

    MATH  Google Scholar 

  483. Stoughton TB, Yoon JW (2006) Review of Drucker’s postulate and the issue of plastic stability in metal forming. Int J Plast 22:391–433

    MATH  Google Scholar 

  484. Richmond O, Spitzig WA (1980) Pressure dependence and dilatancy of plastic flow, proc. IUTAM Conf, ASME, pp. 377–386

  485. Aretz H (2005) A non-quadratic plane stress yield function for orthotropic sheet metals. J Mater Process Technol 168:1–9

    Google Scholar 

  486. Choi H, Yoon JW (2019) Stress integration-based on finite difference method and its application for anisotropic plasticity and distortional hardening under associated and non-associated flow rules. Comput Methods Appl Mech Eng 345:123–160

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

FB is very grateful to POSCO for generous financial support. OC gratefully acknowledges partial support for this work provided by the Air Force Office of Scientific Research (AFOSR) grant FA9550-18-1-0517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorel Banabic.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banabic, D., Barlat, F., Cazacu, O. et al. Advances in anisotropy of plastic behaviour and formability of sheet metals. Int J Mater Form 13, 749–787 (2020). https://doi.org/10.1007/s12289-020-01580-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-020-01580-x

Keywords

Navigation