Skip to main content
Log in

Environmental specificity in Drosophila-bacteria symbiosis affects host developmental plasticity

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Environmentally acquired microbial symbionts could contribute to host adaptation to local conditions like vertically transmitted symbionts do. This scenario necessitates symbionts to have different effects in different environments. We investigated this idea in Drosophila melanogaster, a species which communities of bacterial symbionts vary greatly among environments. We isolated four bacterial strains isolated from the feces of a D. melanogaster laboratory strain and tested their effects in two conditions: the ancestral environment (i.e. the laboratory medium) and a new environment (i.e. fresh fruit with live yeast). All bacterial effects on larval and adult traits differed among environments, ranging from very beneficial to marginally deleterious. The joint analysis of larval development speed and adult size further shows bacteria affected developmental plasticity more than resource acquisition. This effect was largely driven by the contrasted effects of the bacteria in each environment. Our study illustrates that understanding D. melanogaster symbiotic interactions in the wild will necessitate working in ecologically realistic conditions. Besides, context-dependent effects of symbionts, and their influence on host developmental plasticity, shed light on how environmentally acquired symbionts may contribute to host evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anagnostou C, Dorsch M, Rohlfs M (2010) Influence of dietary yeasts on Drosophila melanogaster life-history traits. Entomol Exp Appl 136(1):1–11

    Google Scholar 

  • Ankrah NY, Douglas AE (2018) Nutrient factories: metabolic function of beneficial microorganisms associated with insects. Environ Microbiol 20(6):2002–2011

    PubMed  Google Scholar 

  • Bakula M (1969) The persistence of a microbial flora during postembryogenesis of Drosophila melanogaster. J Invertebr Pathol 14(3):365–374

    CAS  PubMed  Google Scholar 

  • Becher PG, Flick G, Rozpędowska E, Schmidt A, Hagman A, Lebreton S, Larsson MC, Hansson BS, Piskur J, Witzgall P, Bengtsson M (2012) Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 26(4):822–828

    Google Scholar 

  • Begg M, Robertson FW (1948) Nutritional requirements of Drosophila melanogaster. Nature 161(4098):769

    CAS  PubMed  Google Scholar 

  • Bing X, Gerlach J, Loeb G, Buchon N (2018) Nutrient-dependent impact of microbes on Drosophila suzukii development. mBio 9(2):e02199–e022017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200(2):558–569

    CAS  PubMed  Google Scholar 

  • Broderick NA, Lemaitre B (2012) Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3(4):307–321

    PubMed  PubMed Central  Google Scholar 

  • Brown A, Akçay E (2019) Evolution of transmission mode in conditional mutualisms with spatial variation in symbiont quality. Evolution 73(2):128–144

    PubMed  Google Scholar 

  • Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw EA, O’Neill SL (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5(4):e1000368

    PubMed  PubMed Central  Google Scholar 

  • Callens M, Macke E, Muylaert K, Bossier P, Lievens B, Waud M, Decaestecker E (2016) Food availability affects the strength of mutualistic host–microbiota interactions in Daphnia magna. ISME J 10(4):911–920

    PubMed  Google Scholar 

  • Carletto J, Gueguen G, Fleury F, Vanlerberghe-Masutti F (2008) Screening the bacterial endosymbiotic community of sap-feeding insects by terminal-restriction fragment length polymorphism analysis. Entomol Exp Appl 129(2):228–234

    CAS  Google Scholar 

  • Cass BN, Himler AG, Bondy EC, Bergen JE, Fung SK, Kelly SE, Hunter MS (2016) Conditional fitness benefits of the Rickettsia bacterial symbiont in an insect pest. Oecologia 180(1):169–179

    PubMed  Google Scholar 

  • Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A (2011) Bacterial communities of diverse Drosophila species: ecological context of a host–microbe model system. PLoS Genet 7(9):e1002272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chevin LM, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8(4):e1000357

    PubMed  PubMed Central  Google Scholar 

  • Couret J, Huynh-Griffin L, Antolic-Soban I, Acevedo-Gonzalez TS, Gerardo NM (2019) Even obligate symbioses show signs of ecological contingency: impacts of symbiosis for an invasive stinkbug are mediated by host plant context. Ecol Evol 9(16):9087–9099

    PubMed  PubMed Central  Google Scholar 

  • Daskin JH, Alford RA (2012) Context-dependent symbioses and their potential roles in wildlife diseases. Proc R Soc Lond B Biol Sci 279(1733):1457–1465

    Google Scholar 

  • De Vries EJ, Jacobs G, Sabelis MW, Menken SB, Breeuwer JA (2004) Diet–dependent effects of gut bacteria on their insect host: the symbiosis of Erwinia sp. and western flower thrips. Proc R Soc Lond B Biol Sci 271(1553):2171–2178

    Google Scholar 

  • Douglas AE (2018) The Drosophila model for microbiome research. Lab Anim 47(6):157

    Google Scholar 

  • Duncan AB, Fellous S, Accot R, Alart M, Chantung Sobandi K, Cosiaux A, Kaltz O (2010) Parasite-mediated protection against osmotic stress for Paramecium caudatum infected by Holospora undulata is host genotype specific. FEMS Microbiol Ecol 74(2):353–360

    CAS  PubMed  Google Scholar 

  • Ebert D (2013) The epidemiology and evolution of symbionts with mixed-mode transmission. Annu Rev Ecol Evol Syst 44:623–643

    Google Scholar 

  • Fellous S, Salvaudon L (2009) How can your parasites become your allies? Trends Parasitol 25(2):62–66

    PubMed  Google Scholar 

  • Fellous S, Duron O, Rousset F (2011) Adaptation due to symbionts and conflicts between heritable agents of biological information. Nat Rev Genet 12(9):663

    CAS  PubMed  Google Scholar 

  • Fellous S, Guilhot R, Xuéreb A, Rombaut A (2018) A high-throughput spectrophotometric assay of adult size in Drosophila that facilitates microbial and biochemical content analysis. Dros Inf Serv 101:69–74

    Google Scholar 

  • Fogleman JC, Starmer WT, Heed WB (1981) Larval selectivity for yeast species by Drosophila mojavensis in natural substrates. Proc Natl Acad Sci 78(7):4435–4439

    CAS  PubMed  Google Scholar 

  • Fogleman JC, Starmer WT, Heed WB (1982) Comparisons of yeast florae from natural substrates and larval guts of southwestern Drosophila. Oecologia 52(2):187–191

    PubMed  Google Scholar 

  • Fry JD (1993) The “general vigor” problem: can antagonistic pleiotropy be detected when genetic covariances are positive? Evolution 47(1):327–333

    PubMed  Google Scholar 

  • Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N, Gavryushkin A, Carlson JM, Beerenwinkel N, Ludington WB (2018) Microbiome interactions shape host fitness. Proc Natl Acad Sci 115(51):E11951–E11960

    CAS  PubMed  Google Scholar 

  • Guilhot R, Rombaut A, Xuéreb A, Howell K, Fellous S (2019) Environmental specificity in Drosophila-bacteria symbiosis affects host developmental plasticity. bioRxiv 717702

  • Haynes S, Darby AC, Daniell TJ, Webster G, Van Veen FJF, Godfray HCJ, Prosser JI, Douglas AE (2003) Diversity of bacteria associated with natural aphid populations. Appl Environ Microbiol 69(12):7216–7223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang D, Kopp A, Chandler JA (2015) Interactions between Drosophila and its natural yeast symbionts—is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship? PeerJ 3:e1116

    PubMed  PubMed Central  Google Scholar 

  • Hori M, Fujishima M (2003) The endosymbiotic bacterium Holospora obtusa enhances heat-shock gene expression of the host Paramecium caudatum. J Eukaryot Microbiol 50(4):293–298

    CAS  PubMed  Google Scholar 

  • Huang JH, Douglas AE (2015) Consumption of dietary sugar by gut bacteria determines Drosophila lipid content. Biol Lett 11(9):20150469

    PubMed  PubMed Central  Google Scholar 

  • Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329(5988):212–215

    CAS  PubMed  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7(12):1225–1241

    Google Scholar 

  • Lee JH, Lee KA, Lee WJ (2017) Microbiota, gut physiology, and insect immunity. Adv Insect Physiol 52:111–138

    Google Scholar 

  • Lee KA, Cho KC, Kim B, Jang IH, Nam K, Kwon YE, Kim M, Hyeon DY, Hwang D, Seol JH, Lee WJ (2018) Inflammation-modulated metabolic reprogramming is required for DUOX-dependent gut immunity in Drosophila. Cell Host Microbe 23(3):338–352

    CAS  PubMed  Google Scholar 

  • Leitão-Gonçalves R, Carvalho-Santos Z, Francisco AP, Fioreze GT, Anjos M, Baltazar C, Elias AP, Itskov PM, Piper MDW, Ribeiro C (2017) Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol 15(4):e2000862

    PubMed  PubMed Central  Google Scholar 

  • Margulis L, Fester R (1991) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge

    Google Scholar 

  • McKenzie VJ, Song SJ, Delsuc F, Prest TL, Oliverio AM, Korpita TM, Alexiev A, Amato KR, Metcalf JL, Kowalewski M, Avenant NL, Link A, Di Fiore A, Seguin-Orlando A, Feh C, Orlando L, Mendelson JR, Sanders J, Knight R (2017) The effects of captivity on the mammalian gut microbiome. Integr Comp Biol 57(4):690–704

    PubMed  PubMed Central  Google Scholar 

  • Moran NA (2007) Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci 104:8627–8633

    CAS  PubMed  Google Scholar 

  • Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190

    CAS  PubMed  Google Scholar 

  • Nunney L (1996) The response to selection for fast larval development in Drosophila melanogaster and its effect on adult weight: an example of a fitness trade-off. Evolution 50(3):1193–1204

    PubMed  Google Scholar 

  • Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci 102(36):12795–12800

    CAS  PubMed  Google Scholar 

  • Pais IS, Valente RS, Sporniak M, Teixeira L (2018) Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLoS Biol 16(7):e2005710

    PubMed  PubMed Central  Google Scholar 

  • Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28(14):1823–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ridley EV, Wong AC, Westmiller S, Douglas AE (2012) Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS ONE 7(5):e36765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sannino DR, Dobson AJ, Edwards K, Angert ER, Buchon N (2018) The Drosophila melanogaster gut microbiota provisions thiamine to its host. mBio 9(2):e00155-18

    PubMed  PubMed Central  Google Scholar 

  • Schretter CE, Vielmetter J, Bartos I, Marka Z, Marka S, Argade S, Mazmanian SK (2018) A gut microbial factor modulates locomotor behaviour in Drosophila. Nature 563(7731):402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwab DB, Riggs HE, Newton IL, Moczek AP (2016) Developmental and ecological benefits of the maternally transmitted microbiota in a dung beetle. Am Nat 188(6):679–692

    PubMed  Google Scholar 

  • Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH, Lee WJ (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334(6056):670–674

    CAS  PubMed  Google Scholar 

  • Spencer DM, Spencer JFT, De Figueroa L, Heluane H (1992) Yeasts associated with rotting citrus fruits in Tucumán, Argentina. Mycol Res 96(10):891–892

    Google Scholar 

  • Starmer WT, Peris F, Fontdevila A (1988) The transmission of yeasts by Drosophila buzzatii during courtship and mating. Anim Behav 36(6):1691–1695

    Google Scholar 

  • Staubach F, Baines JF, Künzel S, Bik EM, Petrov DA (2013) Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment. PLoS ONE 8(8):e70749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F (2011) Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 14(3):403–414

    CAS  PubMed  Google Scholar 

  • Sudakaran S, Kost C, Kaltenpoth M (2017) Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol 25(5):375–390

    CAS  PubMed  Google Scholar 

  • Teder T, Vellau H, Tammaru T (2014) Age and size at maturity: a quantitative review of diet-induced reaction norms in insects. Evolution 68(11):3217–3228

    PubMed  Google Scholar 

  • Téfit MA, Leulier F (2017) Lactobacillus plantarum favors the early emergence of fit and fertile adult Drosophila upon chronic undernutrition. J Exp Biol 220:900–907

    PubMed  PubMed Central  Google Scholar 

  • Téfit MA, Gillet B, Joncour P, Hughes S, Leulier F (2018) Stable association of a Drosophila-derived microbiota with its animal partner and the nutritional environment throughout a fly population’s life cycle. J Insect Physiol 106(1):2–12

    PubMed  Google Scholar 

  • Vacchini V, Gonella E, Crotti E, Prosdocimi EM, Mazzetto F, Chouaia B, Callegari M, Mapelli F, Mandrioli M, Alma A, Daffonchio D (2017) Bacterial diversity shift determined by different diets in the gut of the spotted wing fly Drosophila suzukii is primarily reflected on acetic acid bacteria. Environ Microbiol Rep 9(2):91–103

    CAS  PubMed  Google Scholar 

  • Walters AW, Matthews MK, Hughes RC, Malcolm J, Rudman S, Newell PD, Douglas AE, Schmidt PS, Chaston JM (2018) The microbiota influences the Drosophila melanogaster life history strategy. bioRxiv 471540

  • Winans NJ, Walter A, Chouaia B, Chaston JM, Douglas AE, Newell PD (2017) A genomic investigation of ecological differentiation between free-living and Drosophila-associated bacteria. Mol Ecol 26(17):4536–4550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong AC, Chaston JM, Douglas AE (2013) The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J 7(10):1922–1932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong ACN, Dobson AJ, Douglas AE (2014) Gut microbiota dictates the metabolic response of Drosophila to diet. J Exp Biol 217(11):1894–1901

    PubMed  PubMed Central  Google Scholar 

  • Wong ACN, Luo Y, Jing X, Franzenburg S, Bost A, Douglas AE (2015) The host as the driver of the microbiota in the gut and external environment of Drosophila melanogaster. Appl Environ Microbiol 81(18):6232–6240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada R, Deshpande SA, Bruce KD, Mak EM, William WJ (2015) Microbes promote amino acid harvest to rescue undernutrition in Drosophila. Cell Rep 10(6):865–872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zar JH (2009) Biostatistical analysis, 5th edn. Upper Saddle River, New Jersey

    Google Scholar 

Download references

Acknowledgements

We warmly thank L. Benoit and P. Gautier for methodological help and S. Bourg, M.P. Chapuis, S. Charlat, J. Collet, D. Duneau, O. Duron, R. Gallet, P. Gautier, N. Kremer, F. Leulier, N. Rode and F. Vanlerberghe for useful comments on an earlier version of this work. A previous version of this work is available on bioRxiv (Guilhot et al. 2019) and has been peer-reviewed and recommended by Peer Community In Evolutionary Biology (https://doi.org/10.24072/pci.evolbiol.100085).

Funding

This project was supported by French National Research Agency through the ‘SWING’ project (ANR-16-CE02-0015) and by Agropolis Fondation under the reference ID 1505-002 through the ‘Investissements d’avenir’ programme (Labex Agro:ANR-10-LABX-0001-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Guilhot.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5737 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guilhot, R., Rombaut, A., Xuéreb, A. et al. Environmental specificity in Drosophila-bacteria symbiosis affects host developmental plasticity. Evol Ecol 34, 693–712 (2020). https://doi.org/10.1007/s10682-020-10068-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-020-10068-8

Keywords

Navigation