Skip to main content
Log in

A model-driven engineering approach for the service integration of IoT systems

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

With the development of IoT devices and web services, the objects of the real world are more interconnected, which allows applications to extend their characteristics in different fields, including industrial or home environments, among other possible examples such as health, trade, transport, or agriculture. However, this development highlights the challenge of interoperability, because devices are heterogeneous and use different communication protocols and different data formats. For this reason, we propose a model for point-to-point integration in three-layer IoT applications: (a) hardware, which corresponds to the physical objects (controller, sensor and actuator), (b) communication, which is the bridge that allows the exchange of data between a MQTT queue and REST web services, and (c) integration, which establishes a sequence of transactions to coordinate the components of the system. For this purpose, a metamodel, a graphic editor and a code generator have been developed that allow the developer to design IoT systems formed by heterogeneous components without having in-depth knowledge of every hardware and software platform. In order to validate our proposal, a smart home scenario has been developed, with a series of sensors and actuators that combined show a complex behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Sirius website—https://www.eclipse.org/sirius/.

  2. Acceleo website—https://www.eclipse.org/acceleo/.

  3. http://acg.ual.es/projects/cosmart/si4iot.

  4. Gatling official website—https://gatling.io

References

  1. Ahmad, S., DoHyeun, K.: A multi-device multi-tasks management and orchestration architecture for the design of enterprise IoT applications. Future Gen. Comput. Syst. 106, 482–500 (2020)

    Article  Google Scholar 

  2. Al-Osta, M., Bali, A., Gherbi, A.: Event driven and semantic based approach for data processing on IoT gateway devices. J. Ambient Intell. Humaniz. Comput. 10, 4663–4678 (2018)

    Article  Google Scholar 

  3. Alulema, D., Criado, J., Iribarne, L.: A model-driven approach for the integration of hardware nodes in the IoT. In: 7th World Conference on Information Systems and Technologies (CIST’2019), pp. 801–811 (2019)

  4. Alulema, D., Criado, J., Iribarne, L.: RESTIoT. A model-based approach for building RESTful web services in IoT systems. In: XXIV Jornadas de Ingeniería del Software yBases de Datos (JISBD). SISTEDES (2019)

  5. Badamasi, Y.: The working principle of an Arduino. In: 11th International Conference on Electronics, Computer and Computation (ICECCO), pp. 1–4. IEEE (2014)

  6. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice. Morgan & Claypool Publishers, San Rafael, pp. 2019-2031 (2017)

  7. Ciccozzi, F., Spalazzese, R.: MDE4IoT. Supporting the Internet of Things with model-driven engineering. In: International Symposium on Intelligent and Distributed Computing, pp. 67–76. Springer, Cham (2016)

  8. Costa, B., Pires, P.F., Delicato, F.C., Merson, P.: Evaluating REST architectures—approach, tooling and guidelines. J. Syst. Softw. 112(2), 156–180 (2016)

    Article  Google Scholar 

  9. Dar, K., Taherkordi, A., Baraki, H., Eliassen, F., Geihs, K.: A resource oriented integration architecture for the Internet of Things. A business process perspective. Pervasive Mobile Comput. 20, 145–159 (2015)

    Article  Google Scholar 

  10. de Sousa, N.F.S., Perez, D.A.L., Rosa, R.V., Santos, M.A., Rothenberg, C.E.: Network service orchestration: a survey. Comput. Commun. 142–143, 69–94 (2019)

    Article  Google Scholar 

  11. Darabseh, A., Freris, N.: A software-defined architecture for control of IoT cyberphysical systems. Clust. Comput. 22, 1107–1122 (2019)

    Article  Google Scholar 

  12. Grace, P., Pickering, B., Surridge, M.: Model-driven interoperability. Engineering heterogeneous IoT systems. Ann. Telecommun. 71(3–4), 141–150 (2016)

    Article  Google Scholar 

  13. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit. Pearson Education, Boston (2009)

    Google Scholar 

  14. Hwang, G., Lee, J., Park, J., Chang, T.W.: Developing performance measurement system for Internet of Things and smart factory environment. Int. J. Prod. Res. 55(9), 2590–2602 (2017)

    Article  Google Scholar 

  15. Jazayeri, M., Liang, S., Huang, C.: Implementation and evaluation of four interoperable open standards for the Internet of Things. Sensors 15(9), 24343–24373 (2015)

    Article  Google Scholar 

  16. Kathiravelu, P., Van Roy, P., Veiga, L.: SD-CPS. Software-defined cyber-physical systems. Taming the challenges of CPS with workflows at the edge. Clust. Comput. 22(3), 661–677 (2018)

    Article  Google Scholar 

  17. Kovatsch, M., Matsukura, R., Lagally, M., Kawaguchi, T., Toumura, K., Kajimoto, K.: Web of Things (WoT) Architecture. W3C Recommendation (2020)

  18. Limon, X., Guerra-Hernandez, A., Sanchez-Garcia, A. J., Perez Arriaga, J.: SagaMAS. A software framework for distributed transactions in the microservice architecture. In: 6th International Conference in Software Engineering Research and Innovation (CONISOFT’2018), pp. 50–58. IEEE (2019)

  19. Maila-Maila, F., Intriago-Pazmiño, M., Ibarra-Fiallo, J.: Evaluation of open source software for testing performance of web applications. Adv. Intell. Syst. Comput. 931, 75–82 (2019)

    Google Scholar 

  20. Martins, F., Domingos, D.: Modelling IoT behaviour within BPMN business processes. Procedia Comput. Sci. 121, 1014–1022 (2017)

    Article  Google Scholar 

  21. Martin-Lopo, M., Boal, J., Sánchez-Miralles, A.: A literature review of IoT energy platforms aimed at end users. Comput. Netw. 17, 1–19 (2020)

    Google Scholar 

  22. Mesfin, G., Gronli, T.-M., Midekso, D., Ghinea, G.: Towards end-user development of REST client applications on smartphones. Computer Stand. Interfaces, 44:205-219 (2016)

  23. Mineraud, J., Mazhelis, O., Su, X., Tarkoma, S.: A gap analysis of Internet-of-Things platforms. Comput. Commun. 89, 5–16 (2016)

    Article  Google Scholar 

  24. Muehlen, M., Nickerson, J., Midekso, D., Ghinea, G.: Developing web services choreography standards: the case of REST vs. SOAP. Decis. Support Syst. 40(1), 9–29 (2005)

    Article  Google Scholar 

  25. Pautasso, C., Wilde, E., Alarcon, R.: REST: Advanced Research Topics and Practical Applications. Pages 222. Springer New York (2014)

  26. Richardson, C.: Microservices Patterns. Manning Publications Co.. Pages 520 (2018)

  27. Rotsos, C., King, D., Farshad, A., Bird, J., Fawcett, L., Georgalas, N., Gunkel, M., Shiomoto, K., Wang, A., Mauthe, A., Race, N., Hutchison, D.: Network Service Orchestration Standardization: A Technology Survey. Computer Standards & Interfaces, 54:203-215. Elsevier (2017)

  28. Shah, J., Kama, N.: Extending Function Point Analysis Effort Estimation Method for Software Development Phase. 7th International Conference on Software and Computer Applications ICSCA, pp. 77-81. ACM (2018)

  29. Sharma, S., Chang, V., Tim, U. S., Wong, J., Gadia, S.: Cloud and IoT-based Emerging Services Systems. Cluster Computing, 22(1):71-91. Springer (2019)

  30. Silva, B., Murad, K., Kyuchang, L., Yongtak, Y., Diyan, M., Jihun, H., Kijun, H.: RESTful Web of Things for Ubiquitous Smart Home Energy Management. International Conference on Computing, Networking and Communications, ICNC 2020, pp. 176-180. IEEE (2020)

  31. Slama, D., Puhlmann, F., Morrish, J., Bhatnagar, R.M.: Enterprise IoT: Strategies and Best Practices for Connected Products and Services. O’Reilly Media Inc, Beijing (2015)

    Google Scholar 

  32. SOAP (Simple Object Access Protocol): W3C Standard. 2007. https://www.w3.org/TR/soap12/. Last accessed September 2019

  33. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling Framework. Pearson Education, London (2009)

    Google Scholar 

  34. Teixeira, S., Agrizzi, B.A., Filho, J.G.P., Rossetto, S., de Lima-Baldam, R.: Modeling and automatic code generation for wireless sensor network applications using model-driven or business process approaches: a systematic mapping study. J. Syst. Softw. 132, 50–71 (2017)

    Article  Google Scholar 

  35. Thramboulidis, K., Vachtsevanou, D.C., Kontou, I.: CPuS-IoT. A cyber-physical microservice and IoT-based framework for manufacturing assembly systems. Annu. Rev. Control 47, 237–248 (2019)

    Article  Google Scholar 

  36. Yassein, M. B., Shatnawi, M. Q., Aljwarneh, S., Al-Hatmi, R.: Internet of Things. Survey and open issues of MQTT protocol. In: International Conference on Engineering & MIS (ICEMIS), pp. 1–6. IEEE (2017)

  37. Zhou, C., Feng, Y., Yin, Z.: An algebraic complex event processing method for cyber-physical system. Clust. Comput., 3:1-9 (2018)

Download references

Acknowledgements

This work has been funded by the EU ERDF and the Spanish Ministry MINECO under the research project CoSmart TIN2017-83964-R and by the regional project (CEIJ-C01.2) coordinated from UAL-UCA and funded by CEIMAR consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darwin Alulema.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alulema, D., Criado, J., Iribarne, L. et al. A model-driven engineering approach for the service integration of IoT systems. Cluster Comput 23, 1937–1954 (2020). https://doi.org/10.1007/s10586-020-03150-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-020-03150-x

Keywords

Navigation