Skip to main content
Log in

Adic Foxby Classes

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We continue our work on adic semidualizing complexes over a commutative noetherian ring R by investigating the associated Auslander and Bass classes (collectively known as Foxby classes), following Foxby and Christensen. Fundamental properties of these classes include Foxby Equivalence, which provides an equivalence between the Auslander and Bass classes associated to a given adic semidualizing complex. We prove a variety of stability results for these classes, for instance, with respect to \(F {\otimes }_{R}^{\mathbf {L}} - \) where F is an R-complex finite flat dimension, including special converses of these results. We also investigate change of rings and local-global properties of these classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso Tarrío, L., Jeremías López, A., Lipman, J.: Local homology and cohomology on schemes. Ann. Sci. École Norm. Sup. (4) 30(1), 1–39 (1997). MR 1422312 (98d:14028)

    Article  MathSciNet  Google Scholar 

  2. Auslander, M., Bridger, M.: Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I. MR 42 #4580 (1969)

  3. Avramov, L.L., Foxby, H.-B.: Homological dimensions of unbounded complexes. J. Pure Appl. Algebra 71, 129–155 (1991). MR 93g:18017

    Article  MathSciNet  Google Scholar 

  4. Avramov, L.L., Foxby, H.-B.: Ring homomorphisms and finite Gorenstein dimension. Proc. London Math. Soc. (3) 75(2), 241–270 (1997). MR 98d:13014

    Article  MathSciNet  Google Scholar 

  5. Avramov, L.L., Foxby, H.-B., Halperin, S.: Differential graded homological algebra, in preparation (2020)

  6. Benson, D., Iyengar, S.B., Krause, H.: Local cohomology and support for triangulated categories. Ann. Sci. É,c. Norm. Supér. (4) 41(4), 573–619 (2008). MR 2489634 (2009k:18012)

    MathSciNet  MATH  Google Scholar 

  7. Benson, D., Iyengar, S.B., Krause, H.: Colocalizing subcategories and cosupport. J. Reine Angew. Math. 673, 161–207 (2012). MR 2999131

    MathSciNet  MATH  Google Scholar 

  8. Christensen, L.W.: Semi-dualizing complexes and their Auslander categories. Trans. Amer. Math. Soc. 353(5), 1839–1883 (2001). MR 2002a:13017

    Article  MathSciNet  Google Scholar 

  9. Christensen, L.W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions—a functorial description with applications. J. Algebra 302(1), 231–279 (2006). MR 2236602

    Article  MathSciNet  Google Scholar 

  10. Christensen, L.W., Holm, H.: Ascent properties of Auslander categories. Canad. J. Math. 61(1), 76–108 (2009). MR 2488450

    Article  MathSciNet  Google Scholar 

  11. Christensen, L.W., Sather-Wagstaff, S.: Transfer of Gorenstein dimensions along ring homomorphisms. J. Pure Appl. Algebra 214(6), 982–989 (2010). MR 2580673

    Article  MathSciNet  Google Scholar 

  12. Enochs, E.E., Jenda, O.M.G.: Gorenstein injective and projective modules. Math. Z. 220(4), 611–633 (1995). MR 1363858 (97c:16011)

    Article  MathSciNet  Google Scholar 

  13. Enochs, E.E., Jenda, O.M.G., Torrecillas, B.: Gorenstein flat modules. Nanjing Daxue Xuebao Shuxue Bannian Kan 10(1), 1–9 (1993). MR 95a:16004

    MathSciNet  MATH  Google Scholar 

  14. Enochs, E.E., Jenda, O.M.G., Xu, J.Z.: Foxby duality and Gorenstein injective and projective modules. Trans. Amer. Math. Soc. 348(8), 3223–3234 (1996). MR 1355071 (96k:13010)

    Article  MathSciNet  Google Scholar 

  15. Esmkhani, M.A., Tousi, M.: Gorenstein homological dimensions and Auslander categories. J. Algebra 308(1), 321–329 (2007). MR 2290924

    Article  MathSciNet  Google Scholar 

  16. Foxby, H.-B.: Gorenstein modules and related modules. Math. Scand. 31, 267–284 (1973). MR 48 #6094

    Article  MathSciNet  Google Scholar 

  17. Foxby, H.-B.: Isomorphisms between complexes with applications to the homological theory of modules. Math. Scand. 40(1), 5–19 (1977). MR 0447269 (56 #5584)

    Article  MathSciNet  Google Scholar 

  18. Foxby, H.-B.: Bounded complexes of flat modules. J. Pure Appl. Algebra 15(2), 149–172 (1979). MR 535182 (83c:13008)

    Article  MathSciNet  Google Scholar 

  19. Greenlees, J.P.C., May, J.P.: Derived functors of I-adic completion and local homology. J. Algebra 149(2), 438–453 (1992). MR 1172439 (93h:13009)

    Article  MathSciNet  Google Scholar 

  20. Hartshorne, R.: Residues and Duality, Lecture Notes in Mathematics, No. 20. Springer, Berlin (1966). MR 36 #5145

    Google Scholar 

  21. Hartshorne, R.: Local Cohomology, A Seminar Given by A. Grothendieck, Harvard University, Fall, vol. 1961. Springer, Berlin (1967). MR 0224620 (37 #219)

    Google Scholar 

  22. Hartshorne, R.: Affine duality and cofiniteness. Invent. Math. 9, 145–164 (1969/1970). MR 0257096 (41 #1750)

  23. Holm, H., Jørgensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions. J. Pure Appl. Algebra 205(2), 423–445 (2006). MR 2203625

    Article  MathSciNet  Google Scholar 

  24. Kawasaki, K.-I.: On a category of cofinite modules which is Abelian. Math. Z. 269(1-2), 587–608 (2011). MR 2836085 (2012h:13026)

    Article  MathSciNet  Google Scholar 

  25. Kawasaki, K.-I.: On a characterization of cofinite complexes. Addendum to “On a category of cofinite modules which is Abelian”. Math. Z. 275(1-2), 641–646 (2013). MR 3101824

    Article  MathSciNet  Google Scholar 

  26. Kubik, B.: Quasidualizing modules. J. Commut. Algebra 6(2), 209–229 (2014). MR 3249836

    Article  MathSciNet  Google Scholar 

  27. Kubik, B., Leamer, M.J., Sather-Wagstaff, S.: Homology of Artinian and Matlis reflexive modules, I. J. Pure Appl. Algebra 215(10), 2486–2503 (2011). MR 2793952 (2012c:13035)

    Article  MathSciNet  Google Scholar 

  28. Lipman, J.: Lectures on local cohomology and duality, Local cohomology and its applications (Guanajuato, 1999), Lecture Notes in Pure and Appl. Math., vol. 226, Dekker, New York, pp. 39–89. MR 1888195 (2003b:13027) (2002)

  29. Matlis, E.: The Koszul complex and duality. Comm Algebra 1, 87–144 (1974). MR 0344241 (49 #8980)

    Article  MathSciNet  Google Scholar 

  30. Matlis, E.: The higher properties of R-sequences. J. Algebra 50(1), 77–112 (1978). 479882 (80a:13013)

    Article  MathSciNet  Google Scholar 

  31. Melkersson, L.: Modules cofinite with respect to an ideal. J. Algebra 285(2), 649–668 (2005). MR 2125457 (2006i:13033)

    Article  MathSciNet  Google Scholar 

  32. Porta, M., Shaul, L., Yekutieli, A.: On the homology of completion and torsion. Algebr. Represent. Theory 17(1), 31–67 (2014). MR 3160712

    Article  MathSciNet  Google Scholar 

  33. Raynaud, M., Gruson, L.: Critères de platitude et de projectivité. Techniques de “platification” d’un module. Invent. Math. 13, 1–89 (1971). MR 0308104 (46 #7219)

    Article  MathSciNet  Google Scholar 

  34. Sather-Wagstaff, S., Wicklein, R.: Adic semidualizing complexes, preprint. arXiv:1506.07052 (2015)

  35. Sather-Wagstaff, S., Wicklein, R.: Extended local cohomology and local homology. Algebr. Represent. Theory 19(5), 1217–1238 (2016). MR 3551316

    Article  MathSciNet  Google Scholar 

  36. Sather-Wagstaff, S., Wicklein, R.: Adic finiteness: bounding homology and applications. Comm. Algebra 45(9), 3893–3916 (2017). MR 3627638

    Article  MathSciNet  Google Scholar 

  37. Sather-Wagstaff, S., Wicklein, R.: Adically finite chain complexes. J. Algebra Appl. 16(12), 1750232, 23 (2017). MR 3725092

    Article  MathSciNet  Google Scholar 

  38. Sather-Wagstaff, S., Wicklein, R.: Support and adic finiteness for complexes. Comm. Algebra 45(6), 2569–2592 (2017). MR 3594539

    Article  MathSciNet  Google Scholar 

  39. Takahashi, R., White, D.: Homological aspects of semidualizing modules. Math. Scand. 106(1), 5–22 (2010). MR 2603458

    Article  MathSciNet  Google Scholar 

  40. Totushek, J.: Homological dimensions with respect to a semidualizing complex. J. Commut. Algebra 8(2), 275–293 (2016). MR 3510921

    Article  MathSciNet  Google Scholar 

  41. Verdier, J.-L.: Catégories Dérivées, SGA 4\(\frac {1}{2}\). Springer, Berlin (1977). Lecture Notes in Mathematics, vol. 569, pp. 262–311. MR 57 #3132

    Google Scholar 

  42. Verdier, J.-L.: Des catégories dérivées des catégories abéliennes. Astérisque (1996), no. 239, xii+ 253 pp With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis. MR 98c:18007 (1997)

  43. Yekutieli, A.: A separated cohomologically complete module is complete. Comm. Algebra 43(2), 616–622 (2015). MR 3274025

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to Srikanth Iyengar, Liran Shaul, Amnon Yekutieli, and the anonymous referee for helpful comments about this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean K. Sather-Wagstaff.

Additional information

Presented by: Michel Brion

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sean K. Sather-Wagstaff was supported in part by a grant from the NSA. Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sather-Wagstaff, S.K., Wicklein, R. Adic Foxby Classes. Algebr Represent Theor 24, 1155–1189 (2021). https://doi.org/10.1007/s10468-020-09984-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-020-09984-8

Keywords

Mathematics Subject Classification (2010)

Navigation