Skip to main content
Log in

Glass-Ceramic Precursors in B2O3–SiO2MxOy Systems (M — Ti, Zr, Cr) as a Source for Producing Fine-Dispersed Mixtures of High-Melting Carbides and Borides

  • Published:
Refractories and Industrial Ceramics Aims and scope

A new approach to the homogenization of the reaction mixture is presented consisting in the creation of glass-ceramic precursors in oxide systems containing enough components for the joint synthesis of carbides and borides mixed at the molecular level. By the joint carbothermal reduction of glass-ceramic precursors in vacuum at 1600 °C fine mixtures in B4C–SiC–MB2 systems (M—Ti, Cr, Zr) without or with an insignificant content of impurities were obtained. Due to the good solubility of titania in the silicate-borate melt the microstructure of the ternary B4 C–SiC–TiB2 sample is represented by boron carbide crystals up to 1 μm in size surrounded by nanoparticles of 30 – 40 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Buyuk, A. B. Tugrul, A. C. Akarsu, and A. O. Addemir, “Investigation of behaviour of titanium diboride reinforced boron carbide – silicon carbide composites against Cs-137 gamma radioisotope source by using gamma transmission technique”, Proceedings of the International Congress on Advances in Applied Physics and Materials Science, (2011, Antalya), 121, 135 – 137 (2012).

  2. N. Cho, Processing of Boron Carbide [in Russian], PhD thesis, Georgia Institute of Technology, Georgia (2006) 79 p.

  3. B. X. Zhu, Y. J. Zhang, H. S. Wang, et al., “Hot-press sintering densification, microstructure and properties of SiC–TiB2/B4C composites”, Key Eng. Mater., 602 / 603, 488 – 493 (2014).

  4. F. Thévenot, “Sintering of boron carbide and boron carbide – silicon carbide two-phase materials and their properties”, J. Nucl. Mater., 152, 154 – 162 (1988).

    Article  Google Scholar 

  5. S. S. Ordan’yan, V. I. Rumyantsev, D. D. Nesmelov, and D. V. Korablev, “Physicochemical basis of creating new ceramics with participation of boron-containing refractory compounds and its practical implementation”, Refract. Ind. Ceram., 53(3), 108 – 111 (2012).

    Article  Google Scholar 

  6. S. S. Ordan’yan, D. D. Nesmelov, D. P. Danilovich, and Yu. P. Udalov, “On the structure of SiC–B4C–MedB2 systems and the prospects for creating composite ceramic materials based on them” [in Russian], Izv. VUZov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya, No. 4, 41 – 50 (2016).

  7. Yu. P. Udalov, E. E. Valova, and S. S. Ordan’yan, “Preparation and abrasive properties of eutectic compositions in the B4C–SiC–TiB2 system”, Refractories, 36(7/8), pp. 233, 234 (1995).

  8. W.-J. Li, R. Tu, and T. Goto, “Preparation of directionally solidified B4C–TiB2–SiC ternary eutectic composites by a floating zone method and their properties”, Mater. Trans, JIM, 46(9), 2067 – 2072 (2005).

    Article  CAS  Google Scholar 

  9. Q.-L. Guo, J.-G. Li, and A.-Y. Peng, “Preparation of B4C-ZrB2-SiC eutectic ceramics by arc melting method”, Frontiers of Materials Science, No. 4, 281 – 284 (2010).

  10. M. V. Zamula, A. V. Derevyanko, V. G. Kolesnichenko, et al., “Electric discharge sintering of refractory composites of the TiN–AlN and B4C–TiB2 systems” [in Russian], Nanostrukturnoe Materialovedenie, No. 4, 69 – 76 (2009).

  11. O. Yu. Sorokin, D. V. Grashchenkov, S. S. Solntsev, and S. A. Evdokimov, “Ceramic composite materials with high oxidative stability for advanced aircraft” [in Russian], (review), [Electronic resource], Scientific and Technical Online Journal “Trudy VIAM”, No. 6 (2014). http://viam-works.ru/ru/articles?artid=675.

  12. F. Aldinger and V. A. Weberruss, Advanced Ceramics and Future Materials, John Wiley and Sons (2010) 520 p.

  13. A. Mukhopadhyay and B. Basu, “Consolidation-microstructure-property relationships in bulk nanoceramics and ceramic nanocomposites”, review, Int. Mater. Rev., 5(5), 257 – 288 (2007).

  14. R. A. Andrievski, “Nanostructured titanium, zirconium and hafnium diborides: the synthesis, properties, size effects and stability”, Russian Chemical Reviews, 84(45), 540 – 554 (2015).

    Article  CAS  Google Scholar 

  15. R. A. Andrievski, “Nano-sized silicon carbide: synthesis, structure and properties”, Russian Chemical Reviews, 78(9), 821 – 831 (2009).

    Article  CAS  Google Scholar 

  16. R. A. Andrievski, “Micro- and nanosized boron carbide: synthesis, structure and properties”, Russian Chemical Reviews, 81(6), 549 – 559 (2012).

    Article  CAS  Google Scholar 

  17. A. K. Khanra, L. C. Pathak, and M. M. Godkhindi, “Carbothermal synthesis of zirconium diboride (ZrB2) whiskers”, Adv. Appl. Ceram., 106(3), 155 – 160 (2007).

    Article  CAS  Google Scholar 

  18. D. Portehault, S. Devi, P. Beaunier, et al., “A general solution route toward metal boride nanocrystals”, Angew. Chem. Int. Ed., 50(14), 3262 – 3265 (2011).

    Article  CAS  Google Scholar 

  19. L. S. Volkova, Yu. M. Shulga, and S. P. Shilkin, “Synthesis of nano-sized titanium diboride in a melt of anhydrous sodium tetraborate”, Russ. J. Gen. Chem., 82(5), 819 – 821 (2012).

    Article  CAS  Google Scholar 

  20. J. W. Kim, J.-H. Shim, and J.-P. Ahn, “Mechanochemical synthesis and characterization of TiB2 and VB2 nanopowders”, Mater. Lett., 62(16), 2461 – 2464 (2012).

    Article  Google Scholar 

  21. A. L. Chamberlain,W. G. Fahrenholtz, and G. E. Hilmas, “Reactive hot pressing of zirconium diboride”, J. Eur. Ceram. Soc., 29(16), 3401 – 3408 (2009).

    Article  CAS  Google Scholar 

  22. B. Nasiri-Tabrizi, T. Adhami, and R. Ebrahimi-Kahrizsangi, “Effect of processing parameters on the formation of TiB2 nanopowder by mechanically induced self-sustaining reaction”, Ceram. Int., 40(5), 7345 – 7354 (2014).

    Article  CAS  Google Scholar 

  23. D. To, R. Dave, X. Yin, and S. Sundaresan, “Deagglomeration of nanoparticle aggregates via rapid expansion of supercritical or high-pressure suspensions”, AIChE Journal, 5(11), 2807 – 2826 (2009).

    Article  Google Scholar 

  24. T. V. Kotsar, D. P. Danilovich, S. S. Ordan’yan, and S. V. Vikhman, “Carbothermal synthesis of powders in the B4C–SiC–TiB2 system”, Refract. Ind. Ceram., 58(2), 174 – 178 (2017).

    Article  CAS  Google Scholar 

Download references

The study was carried out with the financial support of the Russian Foundation for Basic Research within the framework of scientific projects No. 18-33-01281 and No. 18-53-18014 using the equipment of the SPbGTI (TU) Engineering Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Kotsar.

Additional information

Translated from Novye Ogneupory, No. 2, pp. 46 – 51, February 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotsar, T.V., Danilovich, D.P. & Ordan’yan, S.S. Glass-Ceramic Precursors in B2O3–SiO2MxOy Systems (M — Ti, Zr, Cr) as a Source for Producing Fine-Dispersed Mixtures of High-Melting Carbides and Borides. Refract Ind Ceram 61, 100–105 (2020). https://doi.org/10.1007/s11148-020-00438-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-020-00438-8

Keywords

Navigation