Skip to main content
Log in

Genome Mining Reveals the Biosynthetic Pathways of Polyhydroxyalkanoate and Ectoines of the Halophilic Strain Salinivibrio proteolyticus M318 Isolated from Fermented Shrimp Paste

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Salinivibrio proteolyticus M318, a halophilic bacterium isolated from fermented shrimp paste, is able to produce polyhydroxyalkanoate (PHA) from different carbon sources. In this study, we report the whole-genome sequence of strain M138, which comprises 2 separated chromosomes and 2 plasmids, and the complete genome contains 3,605,935 bp with an average GC content of 49.9%. The genome of strain M318 contains 3341 genes, 98 tRNA genes, and 28 rRNA genes. The 16S rRNA gene sequence and average nucleotide identity analysis associated with morphological and biochemical tests showed that this strain has high homology to the reference strain Salinivibrio proteolyticus DSM 8285. The genes encoding key enzymes for PHA and ectoine synthesis were identified from the bacterial genome. In addition, the TeaABC transporter responsible for ectoine uptake from the environment and the operon doeABXCD responsible for the degradation of ectoine were also detected. Strain M318 was able to produce poly(3-hydroxybutyrate) [P(3HB)] from different carbon sources such as glycerol, maltose, glucose, fructose, and starch. The ability to produce ectoines at different NaCl concentrations was investigated. High ectoine content of 26.2% of cell dry weight was obtained by this strain at 18% NaCl. This report provides genetic information regarding adaptive mechanisms of strain M318 to stress conditions, as well as new knowledge to facilitate the application of this strain as a bacterial cell factory for the production of PHA and ectoine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amoozegar MA, Schumann P, Hajighasemi M, Fatemi AZ, Karbalaei-Heidari HR (2008) Salinivibrio proteolyticus sp. nov., a moderately halophilic and proteolytic species from a hypersaline lake in Iran. Int J Syst Evol Microbiol 58:1159–1163

  • Anh DBQ, Mi NTT, Huy DNA, Hung PV (2015) Isolation and optimization of growth condition of Bacillus sp. from fermented shrimp paste for high fibrinolytic enzyme production. Arab J Sci Eng 40:23–28

    Article  CAS  Google Scholar 

  • Chamroensaksri N, Tanasupawat S, Akaracharanya A, Visessanguan W, Kudo T, Itoh T (2009) Salinivibrio siamensis sp. nov., from fermented fish (pla-ra) in Thailand. Int J Syst Evol Microbiol 59:880–885

    Article  CAS  Google Scholar 

  • Czech L, Hermann L, Stöveken N, Richter AA, Höppner A, Smits SHJ, Heider J, Bremer E (2018) Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients: genetics, phylogenomics, biochemistry, and structural analysis. Genes 9:177

    Article  Google Scholar 

  • de la Haba RR, López-Hermoso C, Sánchez-Porro C, Konstantinidis KT, Ventosa A (2019) Comparative genomics and phylogenomic analysis of the genus Salinivibrio. Front Microbiol 10:2104

    Article  Google Scholar 

  • Favaro L, Basaglia M, Casella S (2019) Improving polyhydro-xyalkanoate production from inexpensive carbon sources by genetic approaches: a review. Biofuels Bioprod Biorefin 13:208–227

  • Galisteo C, Sánchez-Porro C, de la Haba RR, López-Hermoso C, Fernández AB, Farias ME, Ventosa A (2019) Characterization of Salinivibrio socompensis sp. nov., a new halophilic bacterium isolated from the high-altitude hypersaline lake Socompa, Argentina. Microorganisms 7:241

    Article  CAS  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    Article  CAS  Google Scholar 

  • Grammann K, Volke A, Kunte HJ (2002) New type of osmoregulated solute transporter identified in halophilic members of the bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581T. J Bacteriol 184:3078–3085

    Article  CAS  Google Scholar 

  • Guzmán C, Hurtado A, Carreno C, Casos I (2017) Production of polyhydroxyalkanoates by native halophilic bacteria using Solanum tuberosum L. shell starch. Sci Agropecu 8:109–118

    Article  Google Scholar 

  • Huijberts GNM, van der Wal H, Wilkinson C, Eggink G (1994) Gas-chromatographic analysis of poly(3-hydroxyalkanoates) in bacteria. Biotechnol Tech 8:187–192

    Article  CAS  Google Scholar 

  • Huu-Phong T, Van-Thuoc D, Sudesh K (2016) Biosynthesis of poly(3-hydroxybutyrate) and its copolymer by Yangia sp. ND199 from different carbon sources. Int J Biol Macromol 84:361–266

    Article  CAS  Google Scholar 

  • Kunte HJ, Galinski EA, Trüper HG (1993) A modified FMOC-method for the detection of aminoacid type osmolytes and tetrahy-dropyrimidines (ectoines). J Microbiol Methods 17:129–136

  • Kunte HJ, Lentzen G, Galinski EA (2014) Industrial production of the cell protectant ectoine: production mechanisms, processes, and products. Curr Biotechnol 3:10–25

    Article  CAS  Google Scholar 

  • Lee I, Kim YO, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103

    Article  CAS  Google Scholar 

  • Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72:623–634

    Article  CAS  Google Scholar 

  • Lippert G, Galinski EA (1992) Enzyme stabilization by ectoine-type compatible solutes: protection against heating, freezing and drying. Appl Microbiol Biotechnol 37:61–65

    Article  CAS  Google Scholar 

  • López-Hermoso C, de la Haba RR, Sánchez-Porro C, Ventosa A (2018a) Emended description of Salinivibrio proteolyticus, including Salinivibrio costicola subsp. vallismortis and five new isolates. Int J Syst Evol Microbiol 68:1599–1607

    Article  Google Scholar 

  • López-Hermoso C, de la Haba RR, Sánchez-Porro C, Ventosa A (2018b) Salinivibrio kushneri sp. nov., a moderately halophilic bacteriumisolated from salterns. Syst Appl Microbiol 41:159–166

    Article  Google Scholar 

  • Mellado E, Moore ERB, Nieto JJ, Ventosa A (1996) Analysis of 16S rRNA gene sequences of Vibrio costicola strains: description of Salinivibrio costicola gen. nov., comb. nov. Int J Syst Bacteriol 46:817–821

    Article  CAS  Google Scholar 

  • Mohandas SP, Balan L, Lekshmi N, Cubelio SS, Philip R, Bright Singh IS (2016) Production and characterization of polyhydroxybutyrate from Vibrio harveyi MCCB 284 utilizing glycerol as carbon source. J Appl Microbiol 122:698–707

    Article  Google Scholar 

  • Müller D, Lindemann T, Shah-Hosseini K, Scherner O, Hnop M, Bilstein A, Mösges R (2016) Efficacy and tolerability of an ectoine mouth and throat spray compared with those of saline lozenges in the treatment of acute pharyngitis and/or laryngitis: a perspective, controlled, observational clinical trial. Eur Arch Otorhinolaryngol 273:2591–2597

    Article  Google Scholar 

  • Obruca S, Sedlacek P, Slaninova E, Fritz I, Daffert C, Meixner K, Sedrlova Z, Koller M (2020) Novel unexpected functions of PHA gralunes. Appl Microbiol Biotechnol 104:4795–4810

    Article  CAS  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems 4:2

    Article  Google Scholar 

  • Pongsetkul J, Benjakul S, Vongkamjan K, Sumpavapol P, Osaka K (2017) Microbiological and chemical changes of shrimp Acetes vulgaris during Kapi production. J Food Sci Technol 54:3473–3482

    Article  CAS  Google Scholar 

  • Poolman B, Glaasker E (1998) Regulation of compatible solute accumulation in bacteria. Mol Microbiol 29:397–407

    Article  CAS  Google Scholar 

  • Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696

    Article  Google Scholar 

  • Raza ZA, Abid S, Banat IM (2018) Polyhydroxyalkanoates: characteristics, production, recent developments and applications. Int Biodeterior Biodegradation 126:45–56

    Article  CAS  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganism. Saline Systems 1:5

    Article  Google Scholar 

  • Romano I, Gambacorta A, Lama L, Nicolaus B, Giordano A (2005) Salinivibrio costicola subsp. alcaliphilus subsp. nov., a halo-alkaliphilic aerobe from Campania Region (Italy). Syst Appl Microbiol 28:34–42

  • Romano I, Orlando P, Gambacorta A, Nicolaus B, Dipasquale L, Pascual J, Giordano A, Lama L (2011) Salinivibrio sharmensis sp. nov., a novel haloalkaliphilic bacterium from a saline lake in Ras Mohammed Park (Egypt). Extremophiles 15:213–220

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sauer T, Galinski EA (1998) Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol Bioeng 57:306–313

    Article  CAS  Google Scholar 

  • Schwibbert K, Marin-Sanguino A, Bagyan I, Heidrich G, Lentzen G, Seitz H, Rampp M, Schuster SC, Klenk HP, Pfeiffer F, Oesterhelt D, Kunte HJ (2011) A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581T. Environ Microbiol 13:1973–1994

    Article  CAS  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Tan D, Xue YS, Aibaidula G, Chen GQ (2011) Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresour Technol 102:8130–8136

    Article  CAS  Google Scholar 

  • Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624

    Article  CAS  Google Scholar 

  • Thuoc DV, Hien TT, Sudesh K (2019a) Identification and characterization of ectoine-producing bacteria isolated from Can Gio mangrove soil in Vietnam. Ann Microbiol 69:819–828

    Article  Google Scholar 

  • Thuoc DV, My DN, Loan TT, Sudesh K (2019b) Utilization of waste fish oil and glycerol as carbon sources for polyhydroxyalkanoate (PHA) production by Salinivibrio sp. M318. Int J Biol Macromol 141:885–892

  • Van-Thuoc D, Guzmán H, Quillaguamán J, Hatti-Kaul R (2010) High productivity of ectoines by Halomonas boliviensis using a combined two-step fed-batch culture and milking process. J Biotechnol 147:46–51

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Vietnam National Foundation for Science and Technology Development (Nafosted) (Grant 106-NN.04-2016.11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doan Van Thuoc.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Thuoc, D., Loan, T.T., Trung, T.A. et al. Genome Mining Reveals the Biosynthetic Pathways of Polyhydroxyalkanoate and Ectoines of the Halophilic Strain Salinivibrio proteolyticus M318 Isolated from Fermented Shrimp Paste. Mar Biotechnol 22, 651–660 (2020). https://doi.org/10.1007/s10126-020-09986-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-020-09986-z

Keywords

Navigation