Skip to main content
Log in

Properties of the Vlasov–Maxwell–Einstein Equations and Their Application to the Problems of General Relativity

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

A new universal method is proposed for obtaining Vlasov–type equations for systems of interacting massive charged particles from the general-relativistic Einstein–Hilbert action. At the same time, a new effective approach to synchronizing the proper times of various particles of a many–particle system has been introduced. A new form of the energy–momentum tensor for matter (and the right-hand side of Einstein’s equations) is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. W. Pauli, Theory of Relativity (Pergamon Press, N.Y., 1958).

    MATH  Google Scholar 

  2. V. A. Fock, The Theory of Space, Time, and Gravitation (Pergamon Press, Oxford, 1964).

    MATH  Google Scholar 

  3. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1971).

    MATH  Google Scholar 

  4. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geomety. Methods and Applications (Springer, N.Y., 1984).

    Book  Google Scholar 

  5. A. A. Vlasov, Statistical Distribution Functions (Nauka, M., 1966).

  6. J. Ehlers, ‘‘Survey of general relativity theory,’’ in: Relativity, Astrophysics and Cosmology, ed. W. Israel (Reidel, Dordrecht, 1973).

    Google Scholar 

  7. G. Rein, ‘‘Generic global solutions of the relativistic Vlasov–Maxwell system of plasma physics,’’ Commun. Math. Phys. 135, 41 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  8. Y. Choquet-Bruhat, General Relativity and the Einstein Equations (Oxford University Press, Oxford, 2009).

    MATH  Google Scholar 

  9. A. A. Vlasov, Theory of Many Particles (GITTL, M., 1950, in Russian).

  10. N. A. Chernikov, ‘‘Kinetic equation for relativistic gas in an arbitrary gravitational field,’’ Sov. Phys. Doklady 7, 397 (1962).

    ADS  MathSciNet  MATH  Google Scholar 

  11. Yu. L. Klimontovich, ‘‘A Relativistic transport equations for a plasma,’’ JETP 10, 524 (1960).

    MathSciNet  MATH  Google Scholar 

  12. Yu. G. Ignat’ev, Relativistic Kinetic Theory of Non–Equilibrium Processes (OOO Foliant, Kazan, 2010).

    Google Scholar 

  13. F. Hoyle and J. V. Narlikar, Action at a Distance in Physics and Cosmology (W. H. Freeman and Company, San Francisco, 1974).

    Google Scholar 

  14. C. Cercignani and G. M. Kremer, The Relativistic Boltzmann Equation: Theory and Applications (Birkhauser, Berlin, 2002).

    Book  Google Scholar 

  15. Y. Choquet–Bruhat, Introduction to General Relativity, Black Holes and Cosmology (Oxford University Press, Oxford, 2015).

    MATH  Google Scholar 

  16. Yu. G. Ignat’ev, in Modern Theoretical and Experimental Problems of Relativity Theory and Gravitation (Minsk, 1976).

    Google Scholar 

  17. H. E. Kandrup and P. J. Morrison, ‘‘Hamiltonian structure of the Vlasov–Einstein system and the problem of stability for spherical relativistic star clusters,’’ Ann. Phys. 225, 114 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  18. V. V. Vedenyapin, N. N. Fimin, and I. S. Pershin, ‘‘The Vlasov–Maxwel–Einstein equations and their cosmological applications,’’ Glob. J. Sci. Front. Res. A 19, 11 (2019).

    Google Scholar 

  19. V. V. Vedenyapin and I. S. Pershin, ‘‘Vlasov–Maxwell–Einstein equations and Einstein’s Lambda,’’ Preprint of KIAM RAS, No. 39 (2019).

  20. J. V. Narlikar, Introduction to Cosmology (Cambridge University press, Cambridge, 1993).

    MATH  Google Scholar 

  21. V. G. Gurzadyan, ‘‘The cosmological constant in the McCrea–Milne cosmological scheme,’’ Observatory 105, 42 (1985).

    ADS  Google Scholar 

  22. V. G. Gurzadyan, ‘‘On the common nature of dark matter and dark energy: Galaxy groups,’’ Eur. Phys. J. Plus 134, 14 (2019).

    Article  Google Scholar 

  23. V. G. Gurzadyan and A. Stepanyan, ‘‘\(H_{0}\) tension: Clue to common nature of dark sector?’’, Eur. Phys. J. C 79, 568 (2019).

    Article  ADS  Google Scholar 

  24. V. V. Vedenyapin and M. A. Negmatov, ‘‘On derivation and classification of Vlasov type equations and equations of magnetohydrodynamics. The Lagrange identity, the Godunov form, and critical mass,’’ J. of Math. Sciences 202, 769 (2014).

    Article  MathSciNet  Google Scholar 

  25. V. V. Vedenyapin, N. N. Fimin, and V. M. Chechetkin, ‘‘Vlasov–Maxwell–Einstein equation and transition to a weak relativistic approximation,’’ Comm. Math. Math. Phys. 59, 1816 (2019).

    Article  Google Scholar 

  26. V. V. Vedenyapin, N. N. Fimin, and V. M. Chechetkin, ‘‘The system of Vlasov–Maxwell–Einstein–type equations and its nonrelativistic and weak relativistic limits,’’ Int. J. Mod. Phys. Phys. D, 1950089 (2019).

  27. V. V. Vedenyapin, M. A. Negmatov, and N. N. Fimin, Vlasov and Liouville Type Equations and Their Microscopic, Energetic and Hydrodynamic Consequences (KIAM RAS, M., 2016).

  28. V. V. Vedenyapin, ‘‘Vlasov–Maxwell–Einstein Equation,’’ Preprint of KIAM RAS, No. 188 (2018).

  29. V. V. Vedenyapin, M. A. Negmatov, and N. N. Fimin, ‘‘Vlasov–type and Liouville–type equations, their microscopic, energetic and hydrodynamical consequences,’’ Izv. Mathem. 81, 505 (2017).

    Article  Google Scholar 

  30. V. V. Vedenyapin and M. A. Negmatov, ‘‘Derivation and classification of Vlasov-type and magnetohydrodynamics equations: Lagrange identity and Godunov’s form,’’ Theor. Math. Phys. 170, 394 (2012).

    Article  MathSciNet  Google Scholar 

  31. S. A. Amosov and V. V. Vedenyapin, ‘‘On the Vlasov–Einstein equation and quantization of Vlasov equation,’’ Preprint of KIAM RAS, No. 13 (1997).

  32. V. Vedenyapin, A. Sinitsyn, and E. Dulov, Kinetic Boltzmann, Vlasov and Related Equations (Elsevier, Amsterdam, 2011).

    MATH  Google Scholar 

  33. V. V. Vedenyapin, Kinetic Boltzmann and Vlasov Equations (Fizmatlit, M., 2001, in Russian).

  34. V. V. Vedenyapin, ‘‘Boundary value problems for a stationary Vlasov equation,’’ Sov. Math. Dokl. 34, 335 (1987).

    MATH  Google Scholar 

  35. Yu. Yu. Arkhipov and V. V. Vedenyapin, ‘‘On the classification and stability of steady–state solutions of Vlasov’s equation on a torus and in a boundary value problem,’’ Proc. Steklov Inst. Math. 203, 11 (1995).

    Google Scholar 

  36. V. V. Vedenyapin, ‘‘Time averages and Boltzmann extremals,’’ Dokl. Math. 78, 686 (2008).

    Article  MathSciNet  Google Scholar 

  37. S. Z. Adzhiev and V. V. Vedenyapin, ‘‘Time averages and Boltzmann extremals for Markov chains, discrete Liouville equations, and the Kac circular modelФ, Comput. Math. Math. Phys. 51, 1942 (2011).

    Article  MathSciNet  Google Scholar 

  38. V. V. Vedenyapin and S. Z. Adzhiev, ‘‘Entropy in the sense of Boltzmann and Poincare,’’ Russian Math. Surveys, 69, 995 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  39. V. V. Vedenyapin, S. Z. Adzhiev and V. V. Kazantseva, ‘‘Entropy in the sense of Boltzmann and Poincare, Boltzmann extremals and Hamilton–Jacobi method in non–Hamilton context,’’ Diff, and Functional Diff. Equations 64, 37 (2018).

    Google Scholar 

  40. S. Z. Adzhiev, V. V. Vedenyapin, Yu. A. Volkov, and I. V. Melikhov, ‘‘Generalized Boltzmann–type equations for aggregation in gases,’’ Comput. Math. Math. Phys. 57, 2017 (2017).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Vedenyapin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedenyapin, V.V., Fimin, N.N. & Chechetkin, V.M. Properties of the Vlasov–Maxwell–Einstein Equations and Their Application to the Problems of General Relativity. Gravit. Cosmol. 26, 173–183 (2020). https://doi.org/10.1134/S0202289320020115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289320020115

Navigation