Skip to main content

Advertisement

Log in

Getting from Sea to Nurseries: Considering Tidal Dynamics of Juvenile Habitat Distribution and Connectivity in a Highly Modified Estuarine Riverscape

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Productive and ecologically highly valuable ecosystems, macrotidal estuaries are also characterised by complex habitat and connectivity dynamics driven by tidal and freshwater influence. Organisms living in these constantly changing systems have to match their movement patterns to the shifting habitat mosaic using available windows of connectivity to access habitat patches of interest. This appears particularly important for the juvenile stages of many fish species colonising shallow and intertidal areas of the estuaries as summer nurseries. We apply tools from landscape ecology to investigate the estuarine habitat and connectivity dynamics on the example of juvenile seabass (Dicentrarchus labrax). We test under which conditions spatio-temporal bottlenecks to estuarine nursery colonisation may emerge for this species in a human-modified estuary. Combining a hydrodynamic model of the Seine estuary with remote sensing data allows us to capture structural changes in habitat availability and connectivity at the estuarine scale and at a fine spatio-temporal resolution. With chronological least-cost modelling of successive tidal steps, we assess patterns of nursery accessibility and estimate tidal colonisation fronts for different mobility scenarios. We show that, at certain hydrological conditions, tidal water level variation causes local disruptions of habitat availability and connectivity, creating temporary bottlenecks for seabass juveniles’ movement. Fish mobility appears determinant for their vulnerability to these connectivity disruptions. Our approach allows for quantitative assessment and visualisation of riverscape complexity related to tidal dynamics. It is applicable to other highly dynamic ecosystems, where the mobile nature of connectivity and habitats needs to be integrated into conservation and management planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E. 2003. The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urb Plan 64:233–47.

    Google Scholar 

  • Avoine J, Allen GP, Nichols M, Salomon JC, Larsonneur C. 1981. Suspended-sediment transport in the Seine estuary, France: Effect of man-made modifications on estuary—shelf sedimentology. Mar Geol 40:119–37.

    Google Scholar 

  • Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C. 2013. Individual dispersal, landscape connectivity and ecological networks. Biol Rev 88:310–26.

    PubMed  Google Scholar 

  • Beier P, Majka DR, Spencer WD. 2008. Forks in the road: choices in procedures for designing wildland linkages. Conserv Biol 22:836–51.

    PubMed  Google Scholar 

  • Bretsch K, Allen DM. 2006. Tidal migrations of nekton in salt marsh intertidal creeks. Estuaries Coast 29:474–86.

    Google Scholar 

  • Bull JW, Suttle KB, Singh NJ, Milner-Gulland E. 2013. Conservation when nothing stands still: moving targets and biodiversity offsets. Front Ecol Environ 11:203–10.

    Google Scholar 

  • Cabral H, Costa MJ. 2001. Abundance, feeding ecology and growth of 0-group sea bass, Dicentrarchus labrax, within the nursery areas of the Tagus estuary. J Mar Biol Assoc UK 81:679–82.

    Google Scholar 

  • Caldwell I, Gergel S. 2013. Thresholds in seascape connectivity: influence of mobility, habitat distribution, and current strength on fish movement. Landsc Ecol 28:1937–48.

    Google Scholar 

  • Capra H, Plichard L, Bergé J, Pella H, Ovidio M, McNeil E, Lamouroux N. 2017. Fish habitat selection in a large hydropeaking river: Strong individual and temporal variations revealed by telemetry. Sci Tot Environ 578:109–20.

    CAS  Google Scholar 

  • Carbonneau P, Piégay H. 2012. Fluvial remote sensing for science and management. New York: Wiley.

    Google Scholar 

  • Cattrijsse A, Makwaia ES, Dankwa HR, Hamerlynck O, Hemminga MA. 1994. Nekton communities of an intertidal creek of a European estuarine brackish marsh. Mar Ecol Progr Ser 109:195–208.

    Google Scholar 

  • Cattrijsse A, Hampel H. 2006. European intertidal marshes: a review of their habitat functioning and value for aquatic organisms. Mar Ecol Prog Ser 324:293–307.

    Google Scholar 

  • Christensen V, Coll M, Piroddi C, Steenbeek J, Buszowski J, Pauly D. 2014. A century of fish biomass decline in the ocean. Mar Ecol Prog Ser 512:155–66.

    Google Scholar 

  • Claireaux G, Couturier C, Groison A-L. 2006. Effect of temperature on maximum swimming speed and cost of transport in juvenile European sea bass (Dicentrarchus labrax). J Exp Biol 209:3420–8.

    PubMed  Google Scholar 

  • Cuvilliez A, Deloffre J, Lafite R, Bessineton C. 2009. Morphological responses of an estuarine intertidal mudflat to constructions since 1978 to 2005: The Seine estuary (France). Geomorphology 104:165–74.

    Google Scholar 

  • Ellis WL, Bell SS. 2008. Tidal influence on a fringing mangrove intertidal fish community as observed by in situ video recording: implications for studies of tidally migrating nekton. Mar Ecol Prog Ser 370:207–19.

    Google Scholar 

  • Fahrig L. 1992. Relative importance of spatial and temporal scales in a patchy environment. Theor Popul Biol 41:300–14.

    Google Scholar 

  • Forward RB, Tankersley RA. 2001. Selective tidal-stream transport of marine animals. Oceanogr Mar Biol 39:305–53.

    Google Scholar 

  • Foubert A, Le Pichon C, Mingelbier M, Farrell JM, Morin J, Lecomte F. 2019. Modeling the effective spawning and nursery habitats of northern pike within a large spatiotemporally variable river landscape (St. Lawrence River, Canada). Limnol Oceanogr 64:803–19.

    Google Scholar 

  • Foussard V, Cuvilliez A, Fajon P, Fisson C, Lesueur P, Macur O. 2010. Evolution morphologique d’un estuaire anthropisé de 1800 à nos jours. Fascicule Seine-Aval 2.3. https://www.seine-aval.fr/publication/fasc-evolution-morphologique/.

  • Fritsch M. 2005. Traits biologiques et exploitation du bar commun Dicentrarchus labrax (L.) dans les pêcheries françaises de la manche et du golfe de Gascogne. Doctoral dissertation, University of Western Brittany.

  • Gibson RN. 2003. Go with the flow: tidal migration in marine animals. Hydrobiologia 503:153–61.

    Google Scholar 

  • Grasso F, Le Hir P. 2019. Influence of morphological changes on suspended sediment dynamics in a macrotidal estuary: diachronic analysis in the Seine Estuary (France) from 1960 to 2010. Ocean Dyn 69:83–100.

    Google Scholar 

  • Green BC, Smith DJ, Grey J, Underwood GJ. 2012. High site fidelity and low site connectivity in temperate salt marsh fish populations: a stable isotope approach. Oecologia 168:245–55.

    PubMed  Google Scholar 

  • Hanke MH, Lambert JD, Smith KJ. 2014. Utilization of a multicriteria least-cost path model in an aquatic environment. Int J Geogr Inf Sci 28:1642–57.

    Google Scholar 

  • Hohensinner S, Jungwirth M, Muhar S, Schmutz S. 2011. Spatio-temporal habitat dynamics in a changing Danube River landscape 1812-2006. Riv Res Appl 27:939–55.

    Google Scholar 

  • Jennings S, Lancaster JE, Ryland JS, Shackley SE. 1991. The age structure and growth dynamics of young-of-the-year bass, Dicentrarchus labrax, populations. J Mar Biol Assoc UK 71:799–810.

    Google Scholar 

  • Jennings S, Pawson M. 1992. The origin and recruitment of bass, Dicentrarchus labrax, larvae to nursery areas. J Mar Biol Assoc UK 72:199–212.

    Google Scholar 

  • Kelley D. 1986. Bass nurseries on the west coast of the UK. J Mar Biol Assoc UK 66:439–64.

    Google Scholar 

  • Kelley D. 2002. Abundance, growth and first-winter survival of young bass in nurseries of south-west England. J Mar Biol Assoc UK 82:307–319.

    Google Scholar 

  • Keymer JE, Marquet PA, Velasco-Hernández JX, Levin SA. 2000. Extinction thresholds and metapopulation persistence in dynamic landscapes. Am Nat 156:478–94.

    PubMed  Google Scholar 

  • Laffaille P, Lefeuvre J-C, Schricke M-T, Feunteun E. 2001. Feeding ecology of o-group sea bass, Dicentrarchus labrax, in salt marshes of Mont Saint Michel Bay (France). Estuaries 24:116–25.

    Google Scholar 

  • Lafite R, Romaña L-A. 2001. A man-altered macrotidal estuary: the Seine estuary (France): introduction to the special issue. Estuaries Coast 24:939–939.

    CAS  Google Scholar 

  • Le Hir P, Lafite R. 2012. Projet MODEL: Modélisation validée de l’hydro-morpho-sédimentologie, base physique d’une modélisation environnementale de l’estuaire de la Seine. GIP Seine Aval https://www.seine-aval.fr/projet/model/.

  • Le Pichon C, Gorges G, Baudry J, Goreaud F, Boët P. 2009. Spatial metrics and methods for riverscapes: quantifying variability in riverine fish habitat patterns. Environmetrics 20:512–26.

    Google Scholar 

  • Le Pichon C, Gorges G, Faure T, Boussard H. 2006. Anaqualand 2.0: freeware of distances calculations with frictions on a corridor. 2.0 edn. Cemagref, Antony. https://hef.inrae.fr/recherche/logiciels/.

  • Leis JM, Balma P, Ricoux R, Galzin R. 2012. Ontogeny of swimming ability in the European sea bass, Dicentrarchus labrax (L.)(Teleostei: Moronidae). Mar Biol Res 8:265–272.

    Google Scholar 

  • Lesourd S, Lesueur P, Fisson C, Dauvin J-C. 2016. Sediment evolution in the mouth of the Seine estuary (France): A long-term monitoring during the last 150 years. CR Geosci 348:442–50.

    Google Scholar 

  • López R, de Pontual H, Bertignac M, Mahévas S. 2015. What can exploratory modelling tell us about the ecobiology of European sea bass (Dicentrarchus labrax): a comprehensive overview. Aquat Living Resour 28:61–79.

    Google Scholar 

  • Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–9.

    CAS  PubMed  Google Scholar 

  • Martinho F, Leitão R, Neto JM, Cabral H, Lagardère F, Pardal MA. 2008. Estuarine colonization, population structure and nursery functioning for 0-group sea bass (Dicentrarchus labrax), flounder (Platichthys flesus) and sole (Solea solea) in a mesotidal temperate estuary. J App Ichthyol 24:229–37.

    Google Scholar 

  • Nagelkerken I, Sheaves M, Baker R, Connolly RM. 2015. The seascape nursery: a novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish Fish 16:362–71.

    Google Scholar 

  • Neumann W, Martinuzzi S, Estes AB, Pidgeon AM, Dettki H, Ericsson G, Radeloff VC. 2015. Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement. Mov Ecol 3:8.

    PubMed  PubMed Central  Google Scholar 

  • Pastoureaud A. 1991. Influence of starvation at low temperatures on utilization of energy reserves, appetite recovery and growth character in sea bass, Dicentrarchus labrax. Aquac 99:167–78.

    Google Scholar 

  • Pickett GD, Pawson MG. 1994. Sea bass. Biology, exploitation and conservation. London: Chapman & Hall.

    Google Scholar 

  • Ray N, Lehmann A, Joly P. 2002. Modeling spatial distribution of amphibian populations: a GIS approach based on habitat matrix permeability. Biodivers Conserv 11:2143–65.

    Google Scholar 

  • Rochette S, Rivot E, Morin J, Mackinson S, Riou P, Le Pape O. 2010. Effect of nursery habitat degradation on flatfish population: Application to Solea solea in the Eastern Channel (Western Europe). J Sea Res 64:34–44.

    Google Scholar 

  • Rouget M, Cowling RM, Lombard AT, Knight AT, Kerley GIH. 2006. Designing large-scale conservation corridors for pattern and process. Conserv Biol 20:549–61.

    PubMed  Google Scholar 

  • Rountree RA, Able KW. 2007. Spatial and temporal habitat use patterns for salt marsh nekton: implications for ecological functions. Aquat Ecol 41:25–45.

    CAS  Google Scholar 

  • Roy ML, Le Pichon C. 2017. Modelling functional fish habitat connectivity in rivers: A case study for prioritizing restoration actions targeting brown trout. Aquat Conserv 27:927–37.

    Google Scholar 

  • Schlosser IJ. 1995. Critical landscape attributes that influence fish population dynamics in headwater streams. Hydrobiologia 303:71–81.

    Google Scholar 

  • Secor H, Rooker JR. 2005. Connectivity in the life histories of fishes that use estuaries. Estuar Coast Shelf Sci 64:1–3.

    Google Scholar 

  • Selleslagh J, Amara R. 2008. Environmental factors structuring fish composition and assemblages in a small macrotidal estuary (eastern English Channel). Estuar Coast Shelf Sci 79:507–17.

    Google Scholar 

  • Sheaves M. 2009. Consequences of ecological connectivity: the coastal ecosystem mosaic. Mat Ecol Prog Ser 391:107–15.

    Google Scholar 

  • Sheaves M, Baker R, Nagelkerken I, Connolly RM. 2015. True value of estuarine and coastal nurseries for fish: incorporating complexity and dynamics. Estuaries Coast 38:401–14.

    Google Scholar 

  • Stanford JA, Lorang MS, Hauer FR. 2005. The shifting habitat mosaic of river ecosystems. SIL Proc 29:123–36.

    Google Scholar 

  • Sutcliffe OL, Bakkestuen V, Fry G, Stabbetorp OE. 2003. Modelling the benefits of farmland restoration: methodology and application to butterfly movement. Landsc Urban Plan 63:15–31.

    Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G. 1993. Connectivity is a vital element of landscape structure. Oikos 68:571–3.

    Google Scholar 

  • Tecchio S, Chaalali A, Raoux A, Tous Rius A, Lequesne J, Girardin V, Lassalle G, Cachera M, Riou P, Lobry J, Dauvin J-C, Niquil N. 2016. Evaluating ecosystem-level anthropogenic impacts in a stressed transitional environment: The case of the Seine estuary. Ecol Indic 61:833–45.

    Google Scholar 

  • Teichert N, Carassou L, Sahraoui Y, Lobry J, Lepage M. 2018. Influence of intertidal seascape on the functional structure of fish assemblages: Implications for habitat conservation in estuarine ecosystems. Aquat Conserv 28:798–809.

    Google Scholar 

  • Tonolla D, Acuña V, Uehlinger U, Frank T, Tockner K. 2010. Thermal heterogeneity in river floodplains. Ecosyst 13:727–40.

    CAS  Google Scholar 

  • Vasilakopoulos P, Maravelias CD, Tserpes G. 2014. The alarming decline of Mediterranean fish stocks. Curr Biol 24:1643–8.

    CAS  PubMed  Google Scholar 

  • Whaley SD, Burd JJ Jr, Robertson BA. 2007. Using estuarine landscape structure to model distribution patterns in nekton communities and in juveniles of fishery species. Mar Ecol Progr Ser 330:83–99.

    Google Scholar 

  • Wiens JA. 1976. Population responses to patchy environments. Ann Rev Ecol Syst 7:81–120.

    Google Scholar 

  • Wimberly MC. 2006. Species dynamics in disturbed landscapes: when does a shifting habitat mosaic enhance connectivity? Landsc Ecol 21:35–46.

    Google Scholar 

  • Zeigler SL, Fagan WF. 2014. Transient windows for connectivity in a changing world. Mov Ecol 2:1.

    PubMed  PubMed Central  Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR. 2012. Estimating landscape resistance to movement: a review. Landsc Ecol 27:777–97.

    Google Scholar 

Download references

Acknowledgements

This study has been carried out in the framework of the ANACONDHA project funded by the scientific research programme of the GIP Seine-Aval. We cordially thank Nicolas Bacq for his invaluable support, ideas and work orientations throughout the project; Anik Brind'Amour, Sylvain Duhamel, Eric Feunteun, Ronan Le Goff, Mike Pawson, Hélène de Pontual, Florian Rozanska and Stéphanie Moussard for sharing their expertise and time during fruitful discussions at different stages of this project; Jean-Philippe Lemoine for producing MARS-3D model outputs; Eric L’Ebrellec for preparing habitat and water depth maps and providing supplementary data on the Seine estuary; Sylvain Descloux for his support with improving Anaqualand and Amandine Zahm for running part of the tested scenarios. We kindly thank two anonymous reviewers and the editors for their very constructive and insightful comments that helped to substantially improve the manuscript throughout the revision process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Alp.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1759 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alp, M., Pichon, C.L. Getting from Sea to Nurseries: Considering Tidal Dynamics of Juvenile Habitat Distribution and Connectivity in a Highly Modified Estuarine Riverscape. Ecosystems 24, 583–601 (2021). https://doi.org/10.1007/s10021-020-00536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00536-1

Keywords

Navigation