Skip to main content
Log in

Study of gas slippage factor in anisotropic porous media using the lattice Boltzmann method

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In unconventional reservoir rocks, pore anisotropy and gas high Knudsen number (Kn) effect are prominent, while gas slippage factor is a crucial parameter to evaluate their apparent permeability. To analyze the correlation of gas slippage factor with pore anisotropy of porous media and Kn, two-dimensional bundle models and anisotropic porous media with same characteristic length were skillfully constructed in this work. A multi-relaxation-time Lattice Boltzmann model combining diffusive reflection boundary condition and Bosanquet-type viscosity model was applied to simulate gas high-Kn flow (Kn = 0.05–0.53) in them. The results showed that Kn and pore-scale anisotropy jointly determine gas slippage factor of anisotropic porous media, which has nothing to do with porosity, specific surface area, and intrinsic permeability in nature. Pore-scale anisotropy leads to the distinct nonlinear changes of gas slippage factor with Kn. When pore-scale anisotropy factor is between 5.37 and 14.58, gas slippage factor of porous media is positively correlated with Kn. But as pore-scale anisotropy factor is in a range from 1.0 to 5.37, gas slippage factor decreases with an increase of Kn. In addition, gas slippage factor of porous media increases with an increase of pore-scale anisotropy as Kn is in a range of 0.18 to 0.53. This work further improves the understanding of gas slippage factor and gas high-Kn effect in anisotropic porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z.Y., Jin, X., Wang, X.Q., Sun, L., Wang, M.R.: Pore-scale geometry effects on gas permeability in shale. J. Nat. Gas. Sci. Eng. 34, 948–957 (2016)

    Article  Google Scholar 

  2. Zheng, Q., Fan, J.T., Li, X.P., Xu, C.: Fractal analysis of the effect of rough surface morphology on gas slip flow in micro- and nano- porous media. Chem. Eng. Sci. 189, 260–265 (2018)

    Article  Google Scholar 

  3. Civan, F.: Effective correlation of apparent gas permeability in tight porous media. Transp. Porous. Med. 82, 375–384 (2010)

    Article  Google Scholar 

  4. Zhang, P.W., Hu, L.M., Meegoda, J.N., Gao, S.Y.: Micro/nano-pore network analysis of gas flow in shale matrix. Sci. Rep. 5, 13501 (2015)

    Article  Google Scholar 

  5. Tanikawa, W., Shimamoto, T.: Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks. Hydrol. Earth Syst. Sc. 3, 1315–1338 (2006)

    Article  Google Scholar 

  6. Wang, J.J., Chen, L., Kang, Q.J., Rahman, S.S.: Apparent permeability prediction of organic shale with generalized lattice Boltzmann model considering surface diffusion effect. Fuel. 181, 478–490 (2016)

    Article  Google Scholar 

  7. Klinkenberg, L.J.: The permeability of porous media to liquids and gases. Drilling and production practice. (1941)

  8. Bravo, M.C.: Effect of transition from slip to free molecular flow on gas transport in porous media. J. Appl. Phys. 102(7), 200–573 (2007)

    Article  Google Scholar 

  9. Zheng, Q., Yu, B.M., Duan, Y.G., Fang, Q.T.: A fractal model for gas slippage factor in porous media in the slip flow regime. Chem. Eng. Sci. 87, 209–215 (2013)

    Article  Google Scholar 

  10. Jones, S.C.: A rapid accurate unsteady-state Klinkenberg permeameter. Soc. Pet. Eng. J. 12, 383–397 (1972)

    Article  Google Scholar 

  11. Jones, F.O., Owens, W.: A laboratory study of low-permeability gas sands. J. Pet. Technol. 32, 1631–1640 (1980)

    Article  Google Scholar 

  12. Sampath, K., Keighin, C.W.: Factors affecting gas slippage in tight sandstones of cretaceous age in the Uinta basin. J. Pet. Technol. 34, 2715–2720 (1982)

    Article  Google Scholar 

  13. Qian, Z., Fan, J.T., Li, X.P., Xu, C.: Fractal analysis of the effect of rough surface morphology on gas slip flow in micro- and nano- porous media. Chem. Eng. Sci. 189, 260–265 (2018)

    Article  Google Scholar 

  14. Hooman, K., Tamayol, A., Dahari, M., Safaei, M.R., Togun, H., Sadri, R.: A theoretical model to predict gas permeability for slip flow through a porous medium. Appl. Therm. Eng. 70(1), 71–76 (2014)

    Article  Google Scholar 

  15. Germanou, L., Ho, M.T., Zhang, Y., Wu, L.: Intrinsic and apparent gas permeability of heterogeneous and anisotropic ultra-tight porous media. J. Nat. Gas. Sci. Eng. 60, 271–283 (2018)

  16. Wu, L., Ho, M.T., Germanou, L., Gu, X.J., Liu, C., Xu, K., Zhang, Y.H.: On the apparent permeability of porous media in rarefied gas flows. J. Fluid Mech. 822, 398–417 (2017)

    Article  Google Scholar 

  17. Clavaud, J.B., Maineult, A., Zamora, M., Rasolofosaon, P., Schlitter, C.: Permeability anisotropy and its relations with porous medium structure. J. Geophys. Res. 113, B01202 (2008)

    Article  Google Scholar 

  18. Bhandari, A.R., Flemings, P.B., Polito, P.J., Cronin, M.B., Bryant, S.L.: Anisotropy and stress dependence of permeability in the Barnett shale. Transp. Porous Med. 108(2), 393–411 (2015)

  19. Mostaghimi, P., Blunt, M.J., Bijeljic, B.: Computations of absolute permeability on micro-CT images. Math. Geosci. 45(1), 103–125 (2013)

    Article  Google Scholar 

  20. Guibert, R., Nazarova, M., Horgue, P., Hamon, G., Creux, P., Debenest, G.: Computational permeability determination from pore-scale imaging: sample size, Mesh and Method Sensitivities. Transp. Porous Med. 107(3), 641–656 (2015)

  21. Tinni A, Fathi E, Agarwal R, Sondergeld C, Akkutlu Y, and Rai C, (2012) Shale permeability measurements on plugs and crushed samples, in SPE-162235

  22. Saif, T., Lin, Q.Y., Butcher, A.R., Bijeljic, B., Blunt, M.J.: Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS mineralogy and FIB-SEM. Appl. Energ. 202, 628–647 (2017)

  23. Moghaddam, R.N., Jamiolahmady, M.: Slip flow in porous media. Fuel. 173, 298–310 (2016)

    Article  Google Scholar 

  24. Gao, J., Yu, Q.C., Lu, X.: Apparent permeability and gas flow behavior in carboniferous shale from the Qaidam Basin, China: An experimental study. Transp. Porous Med. 116, 585–611 (2017)

  25. Bernabé, Y., Li, M., Maineult, A.: Permeability and pore connectivity: a new model based on network simulations. J. Geophys. Res. 115, B10203 (2010)

    Article  Google Scholar 

  26. Zhao, J.L., Yao, J., Li, A.F., Zhang, M., Zhang, L., Yang, Y.F., Sun, H.: Simulation of microscale gas flow in heterogeneous porous media based on the lattice Boltzmann method. J. Appl. Phys. 120(8), 579 (2016)

    Article  Google Scholar 

  27. Sree Hari, P.D., Prabha, S.K., Sathian, S.P.: The effect of characteristic length on mean free path for confined gases. Physica A. 437, 68–74 (2015)

    Article  Google Scholar 

  28. Li, T., Li, M., Jing, X.Q., Xiao, W.L., Cui, Q.W.: Influence mechanism of pore-scale anisotropy and pore distribution heterogeneity on permeability of porous media. Petrol. Explor. Dev. 46(3), 569–579 (2019)

    Google Scholar 

  29. Michalis, V.K., Kalarakis, A.N., Skouras, E.D., Burganos, V.N.: Rarefaction effects on gas viscosity in the Knudsen transition regime. Microfluid. Nanofluid. 9(4–5), 847–853 (2010)

    Article  Google Scholar 

  30. Tang, G.H., Tao, W.Q., He, Y.L.: Gas slippage effect on microscale porous flow using the lattice Boltzmann method. Phys. Rev. E. 72(5), 056301 (2005)

    Article  Google Scholar 

  31. Zhang, X.L., Xiao, L.Z., Shan, X.W., Guo, L.: Lattice Boltzmann simulation of shale gas transport in organic nano-pores. Sci. Rep. 4, 1–6 (2014)

    Google Scholar 

  32. Zhang, T., Sun, S.: A coupled lattice Boltzmann approach to simulate gas flow and transport in shale reservoirs with dynamic sorption. Fuel. 246, 196–203 (2019)

    Article  Google Scholar 

  33. Suga, K.: Lattice Boltzmann methods for complex micro flows: applicability and limitations for practical applications. Fluid Dyn. Res. 45(3), 34501–34531 (2013)

  34. Chen, L., Kang, Q.J., Dai, Z.X., Viswanathan, H.S., Tao, W.Q.: Permeability prediction of shale matrix reconstructed using the elementary building block model. Fuel. 160, 346–356 (2015)

    Article  Google Scholar 

  35. Wang, J.J., Kang, Q.J., Wang, Y.Z., Pawar, R., Rahman, S.S.: Simulation of gas flow in micro-porous media with the regularized lattice Boltzmann method. Fuel. 205, 232–246 (2017)

    Article  Google Scholar 

  36. Beskok, A., Karniadakis, G.E.: A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Therm. Engng. 3, 43–77 (1999)

    Article  Google Scholar 

  37. Guo, Z.L., Shi, B.C.: Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chinese Phys. 11(4), 366–374 (2002)

    Article  Google Scholar 

  38. Gu, X., Cole, D.R., Rother, G., Mildner, D.F.R., Brantley, S.L.: Pores in marcellus shale: a neutron scattering and FIB-SEM study. Energ. Fuel. 29(3), 1295–1308 (2015)

    Article  Google Scholar 

  39. Wang, H.L., Xu, W.Y., Cai, M., Zuo, J.: An experimental study on the slippage effect of gas flow in a compact rock. Transp. Porous. Med. 112, 117–137 (2016)

    Article  Google Scholar 

  40. Hsieh, S.S., Tsai, H.H., Lin, C.Y., Huang, C.F., Chien, C.M.: Gas flow in a long microchannel. Int. J. Heat Mass Tran. 47, 3877–3887 (2004)

    Article  Google Scholar 

  41. Lai, J., Wang, G.W., Wang, Z.Y., Chen, J., Pang, X.J., Wang, S.C., Zhou, Z.L., He, Z.B., Qin, Z.Q., Fan, X.Q.: A review on pore structure characterization in tight sandstones. Earth-Sci. Rev. 177, 436–457 (2018)

    Article  Google Scholar 

  42. Jin, Y., Dong, J.B., Li, X., Wu, Y.: Kinematical measurement of hydraulic tortuosity of fluid flow in porous media. Int. J. Mod. Phy. C. 26(02), 1550017 (2015)

  43. Espinoza, M., Andersson, M., Yuan, J.L., Sundén, B.: Compress effects on porosity, gas-phase tortuosity, and gas permeability in a simulated PEM gas diffusion layer. Int. J. Energ. Res. 39(11), 1528–1536 (2015)

  44. Li, J., Chen, Z.X., Wu, K.L., Zhang, T., Zhang, R., Xu, J.Z., Li, R., Qu, S.Y., Shi, J.T., Li, X.F.: Effect of water saturation on gas slippage in circular and angular pores. Aiche J. 64(9), 3529–3541 (2018)

    Article  Google Scholar 

Download references

Funding

This work is financially supported by the Science and Technology Major Project of PetroChina (No. 2016E-06) and Joint Fund of the National Natural Science Foundation of China (No. U1562217).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Li or Qian Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Hu, Y., Li, Q. et al. Study of gas slippage factor in anisotropic porous media using the lattice Boltzmann method. Comput Geosci 25, 179–189 (2021). https://doi.org/10.1007/s10596-020-09997-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-020-09997-8

Keywords

Navigation