Skip to main content

Advertisement

Log in

Totally transparent hydrogel-based subdural electrode with patterned salt bridge

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A totally transparent subdural electrode was developed by embedding a conductive poly (vinyl alcohol) (PVA)-filled microchannel made of poly(dimethylsiloxane) (PDMS) into an another PVA hydrogel substrate. Tight bonding between the PVA substrate and the PDMS microchannel (salt bridge) was achieved by mechanical interlocking utilizing the microprotrusions formed on the microchannel. This simple method of bonding without the use of any additives such as silane molecules or nanofibers is very suitable for constructing biomedical devices. The salt bridge electrode (total thickness, ca. 1.5 mm) was sufficiently soft, and showed superior shape conformability that makes it an excellent choice as a subdural electrode used on the brain surface. In vivo measurement proved that the salt bridge electrode makes close contact to the exposed porcine brain and can record brain wave signals of frequencies 1 ~ 15 Hz. In addition, the high transparency of the electrode provided a clear view of the brain surface that would assist the effective surgical operation and optogenetic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • H. Abe, H. Yabu, R. Kunikata, A. Suda, M. Matsudaira, T. Matsue, Redox cycling-based electrochemical CMOS imaging sensor for real time and selective imaging of redox analyte. Sensor. Actuat. B-Chem. 304, 127245 (2020)

    Google Scholar 

  • S. Budday, R. Nay, R. de Rooji, P. Steinmann, T. Wyrobek, T.C. Oyaert, E. Kuhl, Mechanical properties of gray and white matter brain tissue by indentation. J. Mech. Behav. Biomed. Mater. 46, 318–330 (2015)

    Google Scholar 

  • Y. Chen, Y. Zhang, Z. Liang, Y. Cao, Z. Han, X. Feng, Flexible inorganic bioelectronics. Npj Flex. Electron. 4(1), 2 (2020)

    Google Scholar 

  • S. Dong, W. Chen, X. Wang, S. Zhang, K. Xu, X. Zheng, Flexible ECoG electrode for implantation and neural signal recording applications. Vacuum 140, 96–100 (2017)

    Google Scholar 

  • K. Feron, R. Lim, C. Sherwood, A. Keynes, A. Brichta, P.C. Dastoor, Organic bioelectronics: Materials and biocompatibility. Int. J. Mol. Sci. 19(8), 2382 (2018)

    Google Scholar 

  • T. Fujii, PDMS-based microfluidic devices for biomedical applications. Microelectron. Eng. 61–62, 907–914 (2002)

    Google Scholar 

  • Y. Gao, K. Wu, Z. Suo, Photodetachable Adhesion. Adv. Mater. 31(6), 1806948 (2018)

    Google Scholar 

  • C. Heo, H. Park, Y.-T. Kim, E. Baeg, Y.H. Kim, S.-G. Kim, M. Suh, A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology. Sci. Rep. 6(1), 27818 (2016)

    Google Scholar 

  • Y. Hou, C. Chen, K. Liu, Y. Tu, L. Zhang, Y. Li, Preparation of PVA hydrogel with high-transparence and investigations of its transparent mechanism. RSC Adv. 5(31), 24023–24030 (2015)

    Google Scholar 

  • A.M. Hubbard, W. Cui, Y. Huang, R. Takahashi, M.D. Dickey, J. Genzer, D.R. King, J.P. Gong, Hydrogel/elastomer laminates bonded via fabric interphases for stimuli-responsive actuators. Matter 1(3), 674–689 (2019)

    Google Scholar 

  • D.S. Kalinina, D.S. Vasilev, A.B. Volnova, N.N. Nalivaeva, I.A. Zhuravin, Age-dependent Electrocorticogram dynamics and epileptogenic responsiveness in rats subjected to prenatal hypoxia. Dev. Neurosci. 41(1–2), 56–66 (2019)

    Google Scholar 

  • E. Kamio, T. Yasui, Y. Iida, J.P. Gong, H. Matsuyama, Inorganic/Organic Double-Network Gels Containing Ionic Liquids. Adv. Mater. 29(47), 1704118 (2017)

    Google Scholar 

  • D. Khodagholy, J.N. Gelinas, T. Thesen, W. Doyle, O. Devinsky, G.G. Malliaras, G. Buzsáki, NeuroGrid: Recording action potentials from the surface of the brain. Nat. Neurosci. 18(2), 310–315 (2015)

    Google Scholar 

  • W.-S. Kim, I.-H. Yun, J.-J. Lee, H.-T. Jung, Evaluation of mechanical interlock effect on adhesion strength of polymer–metal interfaces using micro-patterned surface topography. Int. J. Adhes. Adhes. 30(6), 408–417 (2010)

    Google Scholar 

  • H. Lee, B.P. Lee, P.B. Messersmith, A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448(7151), 338–341 (2007)

    Google Scholar 

  • J.H. Lee, H. Kim, J.H. Kim, S.-H. Lee, Soft implantable microelectrodes for future medicine: Prosthetics, neural signal recording and neuromodulation. Lab Chip 16(6), 959–976 (2016)

    Google Scholar 

  • R.P. Lesser, N.E. Crone, W.R.S. Webber, Subdural electrodes. Clin. Neurophysiol. 121(9), 1376–1392 (2010)

    Google Scholar 

  • Y. Liu, J. Liu, S. Chen, T. Lei, Y. Kim, S. Niu, H. Wang, X. Wang, A.M. Foudeh, J.B.-H. Tok, Z. Bao, Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng 3, 58–68 (2019)

    Google Scholar 

  • X. Liu, J. Liu, S. Lin, and X. Zhao, Hydrogel machines. Mater. Today (2020)

  • R.d.A. Nogueira, D.T. Pessoa, E.L.A. da Silva, E.V.L. Costa, Can a hypercholesterolemic diet change the basal brain electrical activity and during status epilepticus in rats? Metab. Brain Dis. 34(1), 71–77 (2019)

    Google Scholar 

  • M. Ochoa, P. Wei, A.J. Wolley, K.J. Otto, B. Ziaie, A hybrid PDMS-Parylene subdural multi-electrode array. Biomed. Microdevices 15(3), 437–443 (2013)

    Google Scholar 

  • S. Oribe, S. Yoshida, S. Kusama, S. Osawa, A. Nakagawa, M. Iwasaki, T. Tominaga, M. Nishizawa, Hydrogel-Based Organic Subdural Electrode with High Conformability to Brain Surface. Sci. Rep. 9(1), 13379 (2019)

    Google Scholar 

  • D.W. Park, A.A. Schendel, S. Mikael, S.K. Brodnick, T.J. Richner, J.P. Ness, M.R. Hayat, F. Atry, S.T. Frye, R. Pashaie, S. Thongpang, Z. Ma, J.C. Williams, Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat. Commun. 5(1), 1–11 (2014)

    Google Scholar 

  • T.M. Reidy, D. Luo, P. Rana, B. Huegel, X. Cheng, Transparency of PDMS based microfluidic devices under temperature gradients. J. Micromechanics Microengineering 29(1), 015014 (2019)

    Google Scholar 

  • Y. Ren, J. Guo, Z. Liu, Z. Sun, Y. Wu, L. Liu, F. Yan, Ionic liquid–based click-ionogels. Sci. Adv. 5(8), eaax0648 (2019)

    Google Scholar 

  • L. Ronan, N. Voets, C. Rua, A. Alexander-Bloch, M. Hough, C. Mackay, T.J. Crow, A. James, J.N. Giedd, P.C. Fletcher, Differential tangential expansion as a mechanism for cortical gyrification. Cereb. Cortex 8, 2219–2228 (2014)

    Google Scholar 

  • B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, T. Stieglitz, A MEMS-based flexible multichannel ECoG-electrode array. J. Neural Eng. 6(3), 036003 (2009)

    Google Scholar 

  • T. Sakaguchi, S. Nagano, M. Hara, S.-H. Hyon, M. Patel, K. Matsumura, Facile preparation of transparent poly(vinyl alcohol) hydrogels with uniform microcrystalline structure by hot-pressing without using organic solvents. Polym. J. 49(7), 535–542 (2017)

    Google Scholar 

  • A. Shah, S. Mittal, Invasive electroencephalography monitoring: Indications and presurgical planning. Ann. Indian Acad. Neurol. 17, 89(5) (2014)

  • E. Song, J. Li, S.M. Won, W. Bai, J.A. Rogers, Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 19, 590–603 (2020)

    Google Scholar 

  • A. Suarez-Perez, G. Gabriel, B. Rebollo, X. Illa, A. Guimerà-Brunet, J. Hernández-Ferrer, M.T. Martínez, R. Villa, M.V. Sanchez-Vives, Quantification of signal-to-noise ratio in cerebral cortex recordings using flexible MEAs with co-localized platinum black, carbon nanotubes, and gold electrodes. Front. Neurosci. 12, 862 (2018)

    Google Scholar 

  • C. Sung, W. Jeon, K.S. Nam, Y. Kim, H. Butt, S. Park, Multimaterial and multifunctional neural interfaces: From surface-type and implantable electrodes to fiber-based devices. J. Mater. Chem. B 8(31), 6624–6666 (2020)

    Google Scholar 

  • R. Takahashi, K. Shimano, H. Okazaki, T. Kurokawa, T. Nakajima, T. Nonoyama, D.R. King, J.P. Gong, Tough Particle-Based Double Network Hydrogels for Functional Solid Surface Coatings. Adv. Mater. Interfaces 5(23), 1801018 (2018)

    Google Scholar 

  • K. Tian, J. Bae, Z. Suo, J.J. Vlassak, Adhesion between hydrophobic elastomer and hydrogel through hydrophilic modification and interfacial segregation. ACS Appl. Mater. Interfaces 10(49), 43252–43261 (2018)

    Google Scholar 

  • J. Yang, R. Bai, B. Chen, Z. Suo, Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics. Adv. Funct. Mater. 30(2), 1901693 (2020)

    Google Scholar 

  • H. Yi, S.H. Lee, M. Seong, M.K. Kwak, H.E. Jeong, Bioinspired reversible hydrogel adhesives for wet and underwater surfaces. J. Mater. Chem. B 6(48), 8064–8070 (2018)

    Google Scholar 

  • S. Yoshida, K. Sumomozawa, K. Nagamine, M. Nishizawa, Hydrogel Microchambers Integrated with Organic Electrodes for Efficient Electrical Stimulation of Human iPSC-Derived Cardiomyocytes. Macromol. Biosci. 19(6), 1900060 (2019)

    Google Scholar 

  • H. Yuk, T. Zhang, S. Lin, G.A. Parada, X. Zhao, Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15(2), 190–196 (2016)

    Google Scholar 

  • H. Yuk, B. Lu, X. Zhao, Hydrogel bioelectronics. Chem. Soc. Rev. 48(6), 1642–1667 (2019)

    Google Scholar 

  • W. Zhang, L. Chen, J. Zhang, Z. Huang, Design and optimization of carbon nanotube/polymer actuator by using finite element analysis. Chinese Phys. B 26(4), 048801 (2017)

    Google Scholar 

  • S. Zhang, F. Wang, H. Peng, J. Yan, G. Pan, Flexible highly sensitive pressure sensor based on ionic liquid gel film. ACS Omega 3(3), 3014–3021 (2018)

    Google Scholar 

  • S. Zhao, P. Tseng, J. Grasman, Y. Wang, W. Li, B. Napier, B. Yavuz, Y. Chen, L. Howell, J. Rincon, F.G. Omenetto, D.L. Kaplan, Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces. Adv. Mater. 30(25), e1800598 (2018)

    Google Scholar 

  • G. Zhao, Y. Zhang, N. Shi, Z. Liu, X. Zhang, M. Wu, C. Pan, H. Liu, L. Li, Z.L. Wang, Transparent and stretchable Triboelectric Nanogenerator for self-powered tactile sensing. Nano Energy 59, 302–310 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by Tohoku University Frontier Research program (FRiD), AMED-Medical Device Development (20331061) from Japan Agency for Medical Research and Development (AMED), and by Grant-in-Aids for Scientific Research A (18H04157) (18H04158), Scientific Research B (19H03755), Scientific Research C (19 K08090) (18 K08932) (18 K08960) (18 K08561) (17 K11373) (16 K10780) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matsuhiko Nishizawa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 692 kb)

ESM 2

(AVI 6482 kb)

ESM 3

(AVI 1746 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishimura, A., Suwabe, R., Ogihara, Y. et al. Totally transparent hydrogel-based subdural electrode with patterned salt bridge. Biomed Microdevices 22, 57 (2020). https://doi.org/10.1007/s10544-020-00517-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-020-00517-0

Keywords

Navigation